A cutaway of the FLEX reactor (Image: MoltexFLEX)
MoltexFLEX, a Warrington-based company, has secured a grant from the prestigious Henry Royce Institute of Advanced Materials (Royce) for ground-breaking research aimed at qualifying industrial-grade graphite for applications in advanced molten salt nuclear technologies. This grant, awarded as part of Royce's Industrial Collaboration Programme (ICP), seeks to boost research and innovation activities across the United Kingdom.
Graphite plays a crucial role in controlling the fission process in FLEX reactors and other nuclear reactors, and MoltexFLEX aims to explore the use of readily available industrial-grade graphite as part of its commitment to using readily accessible, "off-the-shelf" components.
The research, which will be conducted in partnership with the University of Manchester's Nuclear Graphite Research Group (NGRG), will make use of cutting-edge facilities in the university's irradiated materials laboratory, including x-ray computed tomography and hard x-ray photoelectron spectroscopy, to examine the graphite and its reaction to molten salt exposure in intricate detail.
MoltexFLEX believes that this research will have far-reaching consequences. "By utilizing industrial-grade synthetic graphite with its high thermal and chemical resistance, we can achieve significant cost savings for the FLEX reactor and expedite its global rollout," the company said.
"Collaboration is the key to technological maturity, and by working with Royce and the University of Manchester on this joint project, we will not only advance the development of the FLEX reactor design, but also forge a strong academic-industrial partnership," said Chris Morgans, Project Manager for MoltexFLEX.
The FLEX reactor, which MoltexFLEX is developing, is a small and modular thermal neutron reactor that reduces on-site work, hastens construction, and lowers costs. With no moving parts and fueled for 20 years, the passively safe reactor requires minimal operator input and has low ongoing costs. Each reactor can generate 40 MW of thermal energy at 700°C, and MoltexFLEX aims to have its first reactor operational by 2029.
"Graphite is a significant component of the reactor cost," said MoltexFLEX CEO, David Landon. "The success of this research in demonstrating the feasibility of industrial-grade graphite will help us in our mission to provide affordable nuclear power to all."
Royce, with its hub at the University of Manchester, is a collaboration of nine institutions, including the universities of Cambridge, Imperial College London, Liverpool, Leeds, Oxford, Sheffield, the National Nuclear Laboratory, and UKAEA, and associate partners Cranfield and Strathclyde universities. Funded by the Engineering & Physical Sciences Research Council, part of UK Research & Innovation, Royce coordinates over GBP 300 million in facilities, providing a comprehensive framework for research beyond the capabilities of individual partners or research teams.
The award to MoltexFLEX is part of the Industrial Collaboration Programme, a Royce initiative worth GBP 5.6 million for collaborative business-led research, development, and innovation projects aimed at accelerating progress towards a sustainable future.
In nuclear reactors, other materials used besides graphite include:
Fuel rods: Uranium or plutonium dioxide pellets are encased in metal fuel rods which are arranged in fuel assemblies.
Control rods: Boron, cadmium, or other neutron-absorbing materials are used to regulate the reaction rate.
Moderators: Water, heavy water, or beryllium are used to slow down the speed of neutrons to promote nuclear reactions.
Reflectors: Materials such as beryllium or stainless steel are used to reflect escaping neutrons back into the core to increase the efficiency of the reaction.
Coolants: Water, liquid sodium, or other materials are used to remove heat from the reactor core.Shielding: Lead, concrete, or other materials are used to absorb and block harmful radiation.
These materials are used to ensure the safe and efficient functioning of nuclear reactors. The choice of material depends on various factors such as the type of reactor, operating temperature, and the desired properties of the material
source: (worldnuclearnews)
#MoltexFLEX #graphite # #Exploration
Comments
Post a Comment