Skip to main content

MoltexFLEX Secures Funding for Groundbreaking Graphite Exploration

A cutaway of the FLEX reactor (Image: MoltexFLEX)

MoltexFLEX, a Warrington-based company, has secured a grant from the prestigious Henry Royce Institute of Advanced Materials (Royce) for ground-breaking research aimed at qualifying industrial-grade graphite for applications in advanced molten salt nuclear technologies. This grant, awarded as part of Royce's Industrial Collaboration Programme (ICP), seeks to boost research and innovation activities across the United Kingdom.


Graphite plays a crucial role in controlling the fission process in FLEX reactors and other nuclear reactors, and MoltexFLEX aims to explore the use of readily available industrial-grade graphite as part of its commitment to using readily accessible, "off-the-shelf" components.


The research, which will be conducted in partnership with the University of Manchester's Nuclear Graphite Research Group (NGRG), will make use of cutting-edge facilities in the university's irradiated materials laboratory, including x-ray computed tomography and hard x-ray photoelectron spectroscopy, to examine the graphite and its reaction to molten salt exposure in intricate detail.


MoltexFLEX believes that this research will have far-reaching consequences. "By utilizing industrial-grade synthetic graphite with its high thermal and chemical resistance, we can achieve significant cost savings for the FLEX reactor and expedite its global rollout," the company said.


"Collaboration is the key to technological maturity, and by working with Royce and the University of Manchester on this joint project, we will not only advance the development of the FLEX reactor design, but also forge a strong academic-industrial partnership," said Chris Morgans, Project Manager for MoltexFLEX.


The FLEX reactor, which MoltexFLEX is developing, is a small and modular thermal neutron reactor that reduces on-site work, hastens construction, and lowers costs. With no moving parts and fueled for 20 years, the passively safe reactor requires minimal operator input and has low ongoing costs. Each reactor can generate 40 MW of thermal energy at 700°C, and MoltexFLEX aims to have its first reactor operational by 2029.


"Graphite is a significant component of the reactor cost," said MoltexFLEX CEO, David Landon. "The success of this research in demonstrating the feasibility of industrial-grade graphite will help us in our mission to provide affordable nuclear power to all."


Royce, with its hub at the University of Manchester, is a collaboration of nine institutions, including the universities of Cambridge, Imperial College London, Liverpool, Leeds, Oxford, Sheffield, the National Nuclear Laboratory, and UKAEA, and associate partners Cranfield and Strathclyde universities. Funded by the Engineering & Physical Sciences Research Council, part of UK Research & Innovation, Royce coordinates over GBP 300 million in facilities, providing a comprehensive framework for research beyond the capabilities of individual partners or research teams.


The award to MoltexFLEX is part of the Industrial Collaboration Programme, a Royce initiative worth GBP 5.6 million for collaborative business-led research, development, and innovation projects aimed at accelerating progress towards a sustainable future.

In nuclear reactors, other materials used besides graphite include:

Fuel rods: Uranium or plutonium dioxide pellets are encased in metal fuel rods which are arranged in fuel assemblies.

Control rods: Boron, cadmium, or other neutron-absorbing materials are used to regulate the reaction rate.

Moderators: Water, heavy water, or beryllium are used to slow down the speed of neutrons to promote nuclear reactions.

Reflectors: Materials such as beryllium or stainless steel are used to reflect escaping neutrons back into the core to increase the efficiency of the reaction.

Coolants: Water, liquid sodium, or other materials are used to remove heat from the reactor core.Shielding: Lead, concrete, or other materials are used to absorb and block harmful radiation.

These materials are used to ensure the safe and efficient functioning of nuclear reactors. The choice of material depends on various factors such as the type of reactor, operating temperature, and the desired properties of the material


source: (worldnuclearnews)

#MoltexFLEX #graphite # #Exploration


Comments

Hot Topics

Next-Generation Geothermal: Technologies, Simplified Policy, Financing, and Value Chain

Geothermal energy is poised to play a transformative role in the global shift toward renewable energy and sustainable development .  By:  Robert Buluma As the world races to meet ambitious decarbonization targets, the untapped heat beneath our feet offers a reliable, baseload power source that can complement intermittent wind and solar generation. However, unlocking this potential at scale requires not only cutting-edge geothermal future technologies but also streamlined policy frameworks , innovative financing models , and a reimagined geothermal value chain that reduces costs and accelerates deployment. This article explores the next generation of geothermal innovations technologies that are still on the drawing board alongside strategies to simplify regulations, attract capital, and integrate the value chain into fewer, disruptive steps. Throughout, we’ll highlight key aspects  such as enhanced geothermal systems, closed‑loop geothermal, AI-driven exploration, poli...

JOGMEC Calls for Proposals on Microseismic Technology for Geothermal Exploration

Advancing Geothermal Exploration Through Passive Seismic Techniques By: Robert Buluma The Japan Organization for Metals and Energy Security (JOGMEC) has launched a competitive tender inviting qualified firms to contribute to a groundbreaking technological development project. This initiative focuses on refining microseismic array technology to enhance geothermal exploration, providing a cost-effective and adaptable method for identifying potential geothermal resources. Interested applicants have until April 21, 2025 , to submit their proposals. This initiative is part of JOGMEC’s ongoing commitment to advancing geothermal energy through innovative exploration methods. The project, titled "High-Efficiency High-Density Geothermal Exploration Technology – Development of a New Exploration Method Using Elastic Waves," seeks to optimize the detection of geothermal reservoirs by leveraging passive seismic sources. The Role of Microseismic Technology in Geothermal Exploration Tr...

Sanko Energi Announces Record-Breaking Discovery: Turkey’s Hottest Geothermal Production Well at 308°C

In a major breakthrough for renewable energy in Turkey, Sanko Energi has announced the successful discovery of what is now being hailed as Turkey’s hottest geothermal production well reaching an astonishing 308 degrees Celsius.  By:  Robert Buluma This record-setting temperature not only underlines the immense potential of Turkey’s geothermal resources but also marks a pivotal moment in the nation’s sustainable energy journey. A New Chapter in Turkey’s Geothermal Revolution Turkey has long been recognized as a geothermal powerhouse, thanks to its unique geological structure and abundant geothermal reservoirs. The discovery of a production well reaching 308°C by Sanko Energi pushes the limits of what was previously thought possible and signals a promising future for the country’s renewable energy sector. Key Highlights of the Discovery: Unprecedented Temperature: At 308°C, this well sets a new record for geothermal production in Turkey. Enhanced Production Potential: ...

Panasonic Energy Taps into Geothermal Power to Double Renewable Energy Use and Cut CO₂ Emissions in Japan"

In an inspiring move that underscores its commitment to a carbon-neutral future, Panasonic Energy Co., Ltd.  has announced the introduction of geothermal energy through an off-site corporate Power Purchase Agreement (PPA) in Japan.  By:  Robert Buluma This strategic step, launched on April 1, 2025 , is expected to deliver approximately 50 GWh of geothermal electricity annually , reducing CO₂ emissions by an estimated 22,000 tons per year . This groundbreaking agreement was made possible through Panasonic Operational Excellence Co., Ltd. and executed in partnership with Kyuden Mirai Energy Co., Inc. , a leading provider of renewable energy solutions in Japan. Unlocking the Power Beneath: Why Geothermal? Unlike solar or wind, geothermal energy offers stable, weather-independent output . That makes it a crucial piece of the puzzle in achieving round-the-clock clean energy supply. Panasonic’s choice to tap into geothermal reflects a deeper strategy to diversify its renew...

Geothermal Energy’s Moment in the Sun – But Black Swans Are Casting Shade

For years, geothermal energy has lingered in the shadows of wind and solar power. Now, it's stepping into the spotlight, attracting big-name investors, political endorsements, and global attention as a reliable, renewable, and baseload power source. By: Robert Buluma However, while geothermal is experiencing an unprecedented rise, a series of unexpected challenges so-called "black swan" events are casting shade over its growth.   In this article, we’ll explore why geothermal is finally getting the recognition it deserves, why former President Donald Trump has endorsed geothermal while dismissing solar and wind, the high-level negotiations within Chevron and BP on integrating geothermal with oil and gas, and the major hurdles geothermal faces along with strategies to overcome them.   The Rising Popularity of Geothermal Energy 1. A Reliable and Baseload Renewable Energy Source  Unlike wind and solar, which depend on weather conditions, geothermal energy provides a...

Exploring Bosnia and Herzegovina’s Geothermal Future: UNDP Calls for Experts to Lead Groundbreaking Study

Unlocking Bosnia and Herzegovina’s Geothermal Potential: A Golden Opportunity for Experts   By: Robert Buluma The global push for sustainable energy has ignited interest in geothermal resources, and Bosnia and Herzegovina (BiH) is the latest country stepping up to explore its underground energy reserves. The United Nations Development Programme (UNDP) has announced a Request for Proposal (RFP) for the Development of a Study on the Geothermal Potential of the Federation of Bosnia and Herzegovina (FBiH). This presents a lucrative opportunity for geothermal experts, energy consultants, and research institutions to shape the future of renewable energy in the region.   This is not the 80's when Geothermal Energy was being taxed as if it did not mean something, things have changed and it is getting similar incentives as other Renewables. What’s the Deal?   Published on January 29, 2025, this tender (Reference Number: UNDP-BIH-01166) seeks to assess, analyze, and ...

XGS Energy Acquires Capuono Engineering Geothermal Service Company To Bolster Its Grip

XGS Energy  Acquires Premier Geothermal Drilling Services Company Capuano Engineering By: Robert Buluma In a bold move set to redefine the geothermal energy landscape, XGS Energy has announced the acquisition of Capuano Engineering, a leading global player in geothermal drilling and completion services. This strategic acquisition positions XGS Energy to expand its innovative geothermal technology on a global scale, leveraging Capuano Engineering's extensive expertise and experience in the field. A Leap Forward in Geothermal Technology XGS Energy , based in Palo Alto, California, has been at the forefront of geothermal energy innovation. Their proprietary Thermal Reach Enhancement (TRE) system uses materials that are 50 times more thermally conductive than rock, enabling high-efficiency closed-loop geothermal systems. Unlike conventional geothermal technologies that require specific geological conditions and access to water reservoirs, XGS’s technology can be deployed anywhere, offe...

Driving the Heat Transition in Hanover with Eavor Technology

  A Climate-Neutral Future for Hanover’s District Heating By: Robert Buluma The city of Hanover is taking a bold step toward a climate-friendly future with the implementation of an innovative geothermal energy project by Eavor in collaboration with enercity.  This groundbreaking initiative aims to cover 15 to 20 percent of Hanover’s district heating needs using cutting-edge Eavor-Loop™ technology, significantly reducing reliance on coal-fired power plants and advancing the city's heat transition goals. The Hanover Geothermal Project: A Game Changer for District Heating Eavor is developing two Eavor-Loops™ in the Lahe district, each with a heat output of 15 MW. Once operational, this system will generate up to 250 million kilowatt hours of geothermal energy annually. This is equivalent to supplying heat for approximately 20,000 homes within the enercity supply area, ensuring a stable, renewable, and climate-neutral energy source. Replacing Coal with Sustainable Geothermal Energ...

EDF and TAQA Geothermal Unite to Revolutionize Saudi Arabia’s Renewable Energy Future

EDF and TAQA Geothermal Forge a Landmark Partnership to Advance Geothermal Energy in Saudi Arabia By: Robert Buluma In a move set to redefine Saudi Arabia’s energy landscape, EDF Saudi Arabia and TAQA Geothermal Energy Company have signed a groundbreaking Memorandum of Understanding (MoU) to accelerate the deployment of geothermal energy technologies in the Kingdom. This strategic agreement was formalized on FebKoruary 12, 2025, during the third edition of the PIF Private Sector Forum at the prestigious King Abdul Aziz International Conference Center in Riyadh. Geothermal Energy is well poised to keep on powering new frontiers and this is Great to find new fields ramping up for the heat beneath our feet A Bold Vision for Sustainable Energy The partnership between EDF and TAQA Geothermal marks a significant milestone in Saudi Arabia’s pursuit of clean, renewable energy solutions. The MoU aims to explore and develop geothermal power generation, HVAC applications, and Compressed Air Energ...

Geothermal Projects In Africa, Countries Overview

 Geothermal Projects in Africa: Country-wise Overview By : Robert Buluma Africa is increasingly turning to geothermal energy as a sustainable solution to meet its growing electricity demands. With abundant geothermal resources spread across the continent, several countries have embarked on ambitious projects to harness this clean and renewable energy source. Let's delve into the geothermal projects in various African countries, highlighting key players and prospects. Algeria Algeria is exploring its geothermal potential, particularly in the northern regions. Although in the early stages, initiatives are underway to assess feasibility and potential locations for geothermal power plants.  Burundi Burundi has shown interest in developing its geothermal resources, primarily in the northwest region near Lake Tanganyika. The government is actively seeking partnerships with international firms to kickstart exploration and development efforts. Comoros The Comoros Islands are situated ...