Skip to main content

MoltexFLEX Secures Funding for Groundbreaking Graphite Exploration

A cutaway of the FLEX reactor (Image: MoltexFLEX)

MoltexFLEX, a Warrington-based company, has secured a grant from the prestigious Henry Royce Institute of Advanced Materials (Royce) for ground-breaking research aimed at qualifying industrial-grade graphite for applications in advanced molten salt nuclear technologies. This grant, awarded as part of Royce's Industrial Collaboration Programme (ICP), seeks to boost research and innovation activities across the United Kingdom.


Graphite plays a crucial role in controlling the fission process in FLEX reactors and other nuclear reactors, and MoltexFLEX aims to explore the use of readily available industrial-grade graphite as part of its commitment to using readily accessible, "off-the-shelf" components.


The research, which will be conducted in partnership with the University of Manchester's Nuclear Graphite Research Group (NGRG), will make use of cutting-edge facilities in the university's irradiated materials laboratory, including x-ray computed tomography and hard x-ray photoelectron spectroscopy, to examine the graphite and its reaction to molten salt exposure in intricate detail.


MoltexFLEX believes that this research will have far-reaching consequences. "By utilizing industrial-grade synthetic graphite with its high thermal and chemical resistance, we can achieve significant cost savings for the FLEX reactor and expedite its global rollout," the company said.


"Collaboration is the key to technological maturity, and by working with Royce and the University of Manchester on this joint project, we will not only advance the development of the FLEX reactor design, but also forge a strong academic-industrial partnership," said Chris Morgans, Project Manager for MoltexFLEX.


The FLEX reactor, which MoltexFLEX is developing, is a small and modular thermal neutron reactor that reduces on-site work, hastens construction, and lowers costs. With no moving parts and fueled for 20 years, the passively safe reactor requires minimal operator input and has low ongoing costs. Each reactor can generate 40 MW of thermal energy at 700°C, and MoltexFLEX aims to have its first reactor operational by 2029.


"Graphite is a significant component of the reactor cost," said MoltexFLEX CEO, David Landon. "The success of this research in demonstrating the feasibility of industrial-grade graphite will help us in our mission to provide affordable nuclear power to all."


Royce, with its hub at the University of Manchester, is a collaboration of nine institutions, including the universities of Cambridge, Imperial College London, Liverpool, Leeds, Oxford, Sheffield, the National Nuclear Laboratory, and UKAEA, and associate partners Cranfield and Strathclyde universities. Funded by the Engineering & Physical Sciences Research Council, part of UK Research & Innovation, Royce coordinates over GBP 300 million in facilities, providing a comprehensive framework for research beyond the capabilities of individual partners or research teams.


The award to MoltexFLEX is part of the Industrial Collaboration Programme, a Royce initiative worth GBP 5.6 million for collaborative business-led research, development, and innovation projects aimed at accelerating progress towards a sustainable future.

In nuclear reactors, other materials used besides graphite include:

Fuel rods: Uranium or plutonium dioxide pellets are encased in metal fuel rods which are arranged in fuel assemblies.

Control rods: Boron, cadmium, or other neutron-absorbing materials are used to regulate the reaction rate.

Moderators: Water, heavy water, or beryllium are used to slow down the speed of neutrons to promote nuclear reactions.

Reflectors: Materials such as beryllium or stainless steel are used to reflect escaping neutrons back into the core to increase the efficiency of the reaction.

Coolants: Water, liquid sodium, or other materials are used to remove heat from the reactor core.Shielding: Lead, concrete, or other materials are used to absorb and block harmful radiation.

These materials are used to ensure the safe and efficient functioning of nuclear reactors. The choice of material depends on various factors such as the type of reactor, operating temperature, and the desired properties of the material


source: (worldnuclearnews)

#MoltexFLEX #graphite # #Exploration


Comments

Popular Posts

Amsterdam Strikes Geothermal Gold: Hot, Thick, Permeable Reservoir Confirmed

Breakthrough Beneath the Beach: Amsterdam Region Hits Geothermal Paydirt at Strandeiland By: Robert Buluma The Netherlands just took a giant leap toward fossil-free heating. On the artificial island of Strandeiland (part of Amsterdam’s fast-growing IJburg district), the SCAN exploration well has officially confirmed what the geothermal community has been hoping for: a thick, hot, and , most importantly permeable reservoir in the Slochteren Formation. Key numbers that matter:   Reservoir thickness: 152 meters   Bottom-hole temperature: 66 °C   Permeability: confirmed via successful production and injection tests   That’s not screaming-hot by Icelandic standards, but for direct-use district heating in one of Europe’s densest urban areas, 66 °C is more than enough to supply thousands of homes with clean, baseload heat – forever. Why This Well Changes Everything for the Netherlands The Dutch government launched the SCAN program (Seismic Campaign Nethe...

Zanskar’s Big Blind: First Blind Geothermal Discovery in 30 Years

Big Blind: The Geothermal Discovery That Changes Everything By: Robert Buluma Utah startup  Zanskar Geothermal quietly dropped one of the most important announcements in American energy in decades. They discovered and confirmed “Big Blind” ,the first completely blind, commercial-grade geothermal system found in the United States in over thirty years. Let that sink in. No hot springs.   No fumaroles.   No steaming ground.   No prior wells.   Zero surface expression whatsoever. Just desert, sagebrush, and – 7,000 feet below,  a reservoir hot enough and permeable enough to support gigawatt-scale power production. This isn’t incremental progress. This is a paradigm breaker. Why “Blind” Discoveries Matter So Much For the last 40 years, geothermal development in the U.S. has been geographically handcuffed. You could only build plants where nature advertised the resource on the surface – think Yellowstone, The Geysers, or Imperial Valley. Ever...

Eavor’s Geretsried Closed-Loop Geothermal Plant Now Powers the Grid

Eavor Technologies Achieves Historic Milestone: World’s First Commercial-Scale Closed-Loop Geothermal System Now Delivering Power in Geretsried, Germany Published: December 2025 By:  Robert Buluma The Day Geothermal Changed Forever On a crisp Bavarian morning in late 2025, a quiet revolution in clean energy officially went live.   Eavor Technologies Inc ., the Calgary-based pioneer of closed-loop geothermal technology, announced that its flagship commercial project in Geretsried, Germany has begun delivering power to the grid becoming the world’s first utility-scale multilateral closed-loop geothermal system to achieve commercial operation. For anyone who has followed the geothermal sector for the last decade, this is nothing short of seismic (pun intended). What Makes Eavor’s Closed-Loop System Truly Disruptive? Traditional geothermal plants rely on naturally occurring hot water reservoirs or enhanced geothermal systems (EGS) that require hydraulic fracturing and massiv...

Potsdam Goes Deep: How an All-Electric Drilling Rig Is Turning the City’s Heating Completely Fossil-Free

Revolutionizing Urban Heating: UGS GmbH's Pioneering Geothermal Project in Potsdam By: Robert Buluma In the heart of Germany’s energy transition, a quiet but powerful revolution is taking place in Potsdam. UGS GmbH, a German subsidiary of the French energy storage specialist Geostock, has begun a landmark geothermal project that could redefine how entire cities stay warm in winter ,without burning a single drop of oil or cubic meter of gas. The project, awarded by the local utility Energie und Wasser Potsdam GmbH (EWP), focuses on the former site of the HKW Süd combined heat and power plant in southern Potsdam. The goal is ambitious: replace the aging gas-fired plant with deep geothermal energy and other renewables, eventually supplying tens of thousands of households with completely CO₂-free district heating. At the center of this transformation stands a piece of machinery that looks like something from the future: UGS’s fully modernized, all-electric drilling rig “Rig 110”. After...

Chevron’s Big Pivot: Betting Billions on Geothermal and Biofuels

Chevron CEO Sees Growing Potential in Biofuels and Geothermal Energy Posted by  Robert Buluma | December 11, 2025 The energy world is changing fast, and Chevron, one of the oldest and largest oil companies on the planet, is not sitting on the sidelines. In a recent wide-ranging interview with The Wall Street Journal, Chevron CEO Mike Wirth made it clear: the company sees major, long-term growth in two areas that have nothing to do with crude oil,biofuels and geothermal energy. For a company built on drilling for hydrocarbons, this pivot toward heat from the Earth’s core and fuels grown from plants is nothing short of remarkable. From Black Gold to Green Heat: Why Chevron Is Betting Big on Geothermal Geothermal energy has long been the quiet, reliable cousin in the renewable family,always there, rarely flashy, but suddenly very attractive. Unlike solar panels that go dark at night or wind turbines that stop when the air is still, geothermal plants deliver steady, 24/7 baseload p...

Europe’s Underground Energy Revolution: EGEC Demands 250 GW Geothermal by 2040

Europe’s Geothermal Revolution Is Coming: EGEC Demands a 250 GW Target by 2040 – Here’s Why 2026 Will Be Make-or-Break By: Robert Buluma Published: December 9, 2025   On 5 December 2025, the European Geothermal Energy Council (EGEC) dropped a bombshell policy paper with a crystal-clear message to Brussels: Europe is sleeping on the biggest indigenous, baseload, 24/7 renewable energy source under its feet , and it’s time to wake up. Titled ,The European Geothermal Strategy and Action Plan , Making Europe competitive, secure and affordable, the document is the strongest industry call yet for the European Commission to publish a dedicated European Geothermal Strategy and Action Plan in Q1 2026. And the ambition is massive: 250 GW of installed geothermal capacity by 2040 a six-fold increase from today’s ~44 GW (mostly district heating and a handful of power plants). Why Now? Because Europe Can No Longer Afford to Wait Since Russia’s invasion of Ukraine, Europe has been laser-focu...

Fervo Energy Secures $462 Million to Supercharge Geothermal Innovation

Fervo Energy's $462 Million Geothermal Gold Rush: Google Joins the Heat By:  Robert Buluma December 10, 2025 In the fast-evolving world of clean energy, where solar panels dominate skylines and wind farms stretch across horizons, a deeper and quieter revolution is rising from beneath our feet. Fervo Energy, the Houston-based innovator in enhanced geothermal systems (EGS), has just announced an astonishing $462 million Series E funding round. This isn’t just another climate-tech investment,it's a tectonic moment for geothermal energy. The round was led by   B Capital , joined by major players including Google , Tesla co-founder JB Straubel, and nuclear industry leader Kris Singh. With continued backing from Breakthrough Energy Ventures and Devon Energy, Fervo’s total funding now exceeds $1.5 billion. Why the sudden rush? As AI-driven data centers consume unprecedented amounts of electricity and political winds shift around renewable priorities, geothermal’s promise of 2...

Szczecin Signs 2km Geothermal Well for Energy Independence

Szczecin Takes a Bold Step Toward Energy Self-Sufficiency With New 2-Kilometer Geothermal Well By:  Robert Buluma Szczecin has officially launched one of its most ambitious energy initiatives yet,signing a contract for the construction of a nearly 2-kilometer geothermal exploratory well, a move city leaders are calling “a step toward true energy self-sufficiency.” The new well, designed to determine the geothermal potential beneath the city, could unlock a reliable, clean, and locally available heat source that strengthens energy security while reducing environmental impact. A Strategic Investment in Clean, Local Energy  According to the City Hall, the exploratory-reconnaissance well will help verify whether the geological structures beneath Szczecin contain high-yield geothermal reservoirs suitable for long-term heat production. “We hope this becomes another source of energy that allows us to diversify supply, ensure continuity of services, and maintain financial stability wh...

Taiwan Drills 4,000m in Yilan, Unlocks Deep Geothermal Power

Breakthrough in Taiwan’s Deep Geothermal Energy: Academia Sinica and CPC Corporation Drill Nearly 4,000 Meters in Yilan and Find High-Potential Reservoir Published: December 10, 2025 By:  Robert Buluma   In a historic milestone for Taiwan’s renewable energy journey, Academia Sinica (Central Research Academy) and Taiwan’s state-owned CPC Corporation have successfully completed the island’s first-ever “deep geothermal exploratory well” in Yuanshan Township, Yilan County. The well reached a depth of nearly 4,000 meters, recorded a bottom-hole temperature close to 150 °C, and confirmed the existence of an upwelling heat source beneath the northern Yilan Plain. Researchers are now calling it a “high-potential geothermal reservoir” that could become a cornerstone of Taiwan’s green energy transition. From Anxiety to Excitement: The Temperature Surprise Dr. Ji-Chen Lee (李建成), principal investigator of the “Taiwan Geothermal Research and Technology Development Project” and researcher a...

🔥 Krafla Magma Testbed: Drilling Into the Earth’s Fiery Heart

Krafla Magma Testbed (KMT) : Humanity’s Bold Leap Into the Heart of the Earth Interview  from Bjorn Gudmundsson the C.E.O-Krafla Magma Testbed and Team By:  Robert Buluma In 2009, deep beneath Iceland’s iconic Krafla volcano, a drilling team made history. During the IDDP-1 project, their drill bit pierced into magma molten rock at just two kilometers below the surface. What began as an accident became a scientific revelation. For the first time, humans had safely accessed magma. This “Eureka” moment gave birth to an idea so daring it almost sounds like science fiction: the creation of a permanent observatory where magma could be directly studied. That idea became the  Krafla Magma Testbed (KMT) a visionary international project that promises to rewrite the future of geothermal science, volcanic monitoring, and sustainable energy. Why Krafla? The Perfect Laboratory Beneath Our Feet Krafla’s  geology is unique. It offers a known shallow magma body, decades of research...