Skip to main content

"Equinor Uncovers Seventh Treasure in the North Sea: An Oil and Gas Discovery"

Equinor Strikes Again! The energy giant has made a remarkable discovery in the North Sea, marking the seventh find since autumn of 2019. The latest addition to its list of achievements, the Røver Sør discovery, is said to hold an estimated 17 to 47 MMboe, with a majority of it being oil.

Jan Arne Wold and Elisabeth Sahl / ©Equinor
Partnered with DNO, Wellesley Petroleum and Petoro, Equinor operates the production license and continues to make waves in the oil and gas industry with its string of successful discoveries, including Echino Sør (2019), Swisher (2020), Røver Nord (2021), Blasto (2021), Toppand (2022), and Kveikje (2022).

Geir Sørtveit, Equinor's Senior Vice President for Exploration and Production West Operations, says that discoveries close to existing infrastructure are vital to maintain oil and gas production on the Norwegian continental shelf, as they are more profitable and can be brought to production with minimal carbon emissions. With Røver Sør being in close proximity to the Troll field and other discoveries, it's already deemed to be a commercial success.

Although the exact size of the discovery is yet to be determined, the estimated average volume is around 350 million barrels of oil equivalent, making it a medium-sized Norwegian oil or gas field, similar to the size of the Aasta Hansteen field in the Norwegian sea. Equinor has already started field development projects to coordinate the development of its previous discoveries, and Røver Sør will be part of this work.

The next exploration well in the area, Heisenberg, is set to provide results in March, with more planned for later in the year. Keep an eye on Equinor as it continues to conquer the oil and gas industry with each new discovery.

The steps involved in making an oil discovery are:

Exploration: This involves the use of geological, geophysical and geochemical techniques to identify areas with potential oil deposits. Seismic surveys, drilling and well log analysis are commonly used exploration methods.

Lease Acquisition: If a potential oil deposit is identified, a lease agreement must be secured to explore and drill for oil on the property.

Drilling: The next step is to drill a well to determine if oil is present in commercial quantities. This typically involves drilling to a depth of several kilometers into the earth.

Testing: After drilling, the well is tested to determine the rate at which oil can be produced and the quality of the oil. The results of these tests are used to make a decision on whether to continue with further development.

Appraisal: If the test results are positive, the next step is to conduct a more detailed appraisal to determine the size of the reservoir and the feasibility of commercial production. This may involve additional drilling and testing.

Development: If the appraisal is positive, the next step is to develop the field to bring the oil to production. This may involve the construction of production facilities, pipelines and other infrastructure.

Production: Once the field is developed, oil production can begin. The oil is typically transported to a processing facility for treatment and storage.

Maintenance and Monitoring: Ongoing maintenance and monitoring is required to ensure the safe and efficient production of oil from the field. This may involve the replacement of equipment and the management of environmental impact.

Kindly should you need to read about the current trends in oil and gas discovery this article is splendid! https://alphaxioms.blogspot.com/2023/01/saudi-aramco-and-terra-drone-partner.html

Source:(https://worldoil.com/news/2023/2/9/equinor-makes-seventh-oil-and-gas-discovery-in-north-sea/)

#Equinox #Northsea #Discovery

Comments

Popular posts from this blog

Amsterdam Strikes Geothermal Gold: Hot, Thick, Permeable Reservoir Confirmed

Breakthrough Beneath the Beach: Amsterdam Region Hits Geothermal Paydirt at Strandeiland By: Robert Buluma The Netherlands just took a giant leap toward fossil-free heating. On the artificial island of Strandeiland (part of Amsterdam’s fast-growing IJburg district), the SCAN exploration well has officially confirmed what the geothermal community has been hoping for: a thick, hot, and , most importantly permeable reservoir in the Slochteren Formation. Key numbers that matter:   Reservoir thickness: 152 meters   Bottom-hole temperature: 66 °C   Permeability: confirmed via successful production and injection tests   That’s not screaming-hot by Icelandic standards, but for direct-use district heating in one of Europe’s densest urban areas, 66 °C is more than enough to supply thousands of homes with clean, baseload heat – forever. Why This Well Changes Everything for the Netherlands The Dutch government launched the SCAN program (Seismic Campaign Nethe...

A Quiet Revolution Underground: Prenzlau’s Geothermal Leap Toward a Fully Renewable Heat Future

Prenzlau’s Geothermal Breakthrough: A Decisive Step Toward a Fully Renewable Heat Future By: Robert Buluma The city of Prenzlau, located in northeastern Germany, has reached a major milestone in its transition toward sustainable energy. In December 2025, Stadtwerke Prenzlau announced a decisive breakthrough in its geothermal project after successfully encountering geothermal water at a depth of 983 meters. This discovery represents a critical step forward for the city’s ambition to fully decarbonize its heat supply and positions Prenzlau as a leading example of how medium-sized towns can harness geothermal energy for district heating. The geothermal water discovered during drilling operations is estimated to be around 200 million years old and is contained within a saline sandstone formation deep underground. With a temperature of approximately 44°C and a planned production rate of 130 cubic meters per hour, the resource offers a reliable and continuous source of renewable heat. A test...

Geothermal-Powered Greenhouses: Qingyun County's Leap Toward Sustainable, Year-Round Agriculture in Shandong

Harnessing Geothermal Energy to Power Modern Agriculture: How Qingyun County Is Redefining Sustainable Food Production in Shandong By:  Robert Bulum a As winter tightens its grip across northern China, most agricultural regions brace for declining productivity, rising energy costs, and increased environmental pressure. Yet in Qingyun County, located in China’s eastern Shandong Province, a different story is unfolding,one where geothermal energy is quietly transforming agriculture into a resilient, low-carbon, high-yield enterprise. At the heart of this transformation lies the Shandong Shuifa Aerospace Modern Agriculture Industrial Park, where geothermal energy has become a critical enabler of year-round food production, economic efficiency, and environmental sustainability. A Warm Oasis in the Depth of Winter Shortly after the Minor Snow solar term, temperatures outside the greenhouses in Qingyun County drop sharply. Inside the intelligent greenhouse complex, however, conditions re...

American Critical Resources and Plum Acquisition Corp. IV Sign LOI for SPAC Merger to Advance U.S. Geothermal Lithium Project

Revolutionizing Energy: The Synergy of Geothermal Power and Lithium Extraction at Hell's Kitchen Posted by  Robert Buluma  on December 20, 2025 In an era where the world is racing toward sustainable energy solutions, the intersection of geothermal power and lithium production is emerging as a game-changer. As electric vehicles (EVs), renewable energy storage, and advanced technologies demand ever-increasing supplies of critical minerals, innovative projects are stepping up to meet the challenge. One such groundbreaking initiative is the Hell's Kitchen project by American Critical Resources (ACR), a subsidiary of Controlled Thermal Resources Holdings Inc. (CTR) . This California-based endeavor not only harnesses the Earth's natural heat for clean electricity but also extracts lithium a vital component in batteries ,directly from geothermal brines. With a recent announcement of a proposed business combination with Plum Acquisition Corp. IV (Nasdaq: PLMK), a special purpose ac...

Kiskunhalas Geothermal Project: Drilling Hungary’s Clean Energy Future

An Eight-Billion-Forint Geothermal Bet: Drilling the Future Beneath Kiskunhalas By Robert Buluma | Alphaxioms Insights |  Beneath the vast plains of Hungary’s Great Alföld, immense heat has been quietly stored for millions of years. Now, that hidden energy is poised to reshape the country’s energy future. The region around Kiskunhalas is set to become a focal point of Hungary’s geothermal ambitions, following the signing of a HUF 7.86 billion (approximately EUR 20 million) contract for geothermal drilling and well-testing works. The agreement was signed by a subsidiary of MVM Group , Hungary’s state-owned energy company, and covers geothermal exploration activities to be carried out over the next three years across several areas of the Great Plain. This marks one of the most significant state-backed geothermal initiatives in Hungary in recent years. Unlocking Earth’s Heat to Cut Energy Dependence The project’s strategic objective is clear: to pave the way for geothermal power pla...

Nysa Unveils Ambitious Geothermal Project: Exploratory Drilling Set for Spring 2026

Nysa May Be Sitting on Vast Geothermal Wealth: Exploratory Drilling to Begin in Spring 2026 By: Robert Buluma Nysa, a historic town in southern Poland, could soon become a regional pioneer in geothermal energy. With the signing of a contract for a geothermal exploratory well, the municipality has officially launched one of the most ambitious renewable energy projects ever undertaken in the Opole Voivodeship. Preparatory works will continue through 2025, with drilling scheduled to begin in spring 2026 and continue for approximately six months. The goal is clear: to confirm whether deep beneath Nysa lie geothermal waters capable of transforming the town’s heating system, economy, and environmental footprint. A Strategic Step Toward Energy Independence According to Nysa Mayor Kordian Kolbiarz, geothermal energy represents far more than a technological experiment. It is a strategic investment in the town’s future. If the geothermal resources are confirmed, they could supply heat and hot wa...

Exergy ORC Sets New World Record: 46 MW of Geothermal Power in Turkey Delivered in Under 13 Months

Exergy ORC Delivers Two Geothermal Power Plants in Turkey in Record Time: 46 MW Added in Under 13 Months By:  Robert Buluma On November 30, 2025, Exergy International proudly announced the successful commissioning of two new geothermal power plants in Aydın, Turkey: Maren Nezihe Beren 2 (13 MWe) and Emir (33 MWe), totaling 46 MW of new clean electricity capacity. What makes this milestone truly remarkable is the execution speed , both plants were delivered in less than 13 months from contract signing to full commercial operation, setting a new benchmark in the geothermal ORC (Organic Rankine Cycle) industry. Why This Achievement Matters in 2025 In an era where renewable energy projects often face delays of 24–36 months (or longer), completing two binary-cycle geothermal plants totaling 46 MW in under 13 months is nothing short of extraordinary. Turkey already ranks 4th globally in installed geothermal capacity (~1.7 GW as of 2024), and these new plants reinforce the country’s lead...

Hawaii’s Underground Secret to Cheaper, Greener Cooling Revealed

Unlocking Hawaii’s Hidden Cooling Power: New Report Reveals Huge Potential for Geothermal Cooling on Oahu (2025) By:  Robert Buluma Could the same volcanic islands that give Hawaii its famous heat also provide the solution to cool its buildings , without crushing the electric grid?   A groundbreaking new report released December 8, 2025, by the University of Hawaiʻi at Mānoa (UHM) and Lawrence Berkeley National Laboratory (LBNL) says the answer is a resounding yes. Shallow geothermal heat exchangers (GHEs) , also known as geothermal heat pumps or ground-source heat pumps ,could dramatically cut cooling costs and electricity demand across Oahu, especially for large buildings like schools, military bases, and university facilities. Here’s everything you need to know about this exciting development in Hawaii geothermal cooling technology. Why Hawaii Is Perfectly Suited for Geothermal Cooling Most of the world uses geothermal heat pumps for heating in cold climates. Hawaii ...

Germany Unveils Groundbreaking KfW–Munich Re Program to De-Risk Deep Geothermal Heat Projects

Germany Launches Landmark Financing Program to Accelerate Deep Geothermal Heat Projects By: Robert Buluma Germany has taken a decisive step toward securing a climate-neutral heat future. On December 18, 2025, the German Federal Ministry for Economic Affairs and Energy (BMWK), KfW Development Bank , and global reinsurer Munich Re officially launched a groundbreaking funding program designed to unlock large-scale investments in deep geothermal energy for municipal and industrial heat supply. The new initiative, known as the KfW Geothermal Promotional Loan (KfW-Förderkredit Geothermie), directly addresses one of the most persistent bottlenecks in geothermal development: the high financial risk associated with drilling deep geothermal wells. By combining low-interest loans with comprehensive risk coverage, the program is set to significantly accelerate geothermal deployment across Germany. Why Deep Geothermal Matters for Germany’s Heat Transition While Germany has made remarkable progre...

Fervo Energy To Partner With Turboden In 400 MW Utah Geothermal Project

Unleashing the Power of Earth:  Turboden and  Fervo Energy Partner to Revolutionize Geothermal Energy By: Robert Buluma In the heart of the rugged landscapes of southwest Utah, a groundbreaking collaboration is underway to harness the Earth's natural heat and propel the world towards a greener, more sustainable future. Turboden , a trailblazer in Organic Rankine Cycle (ORC) systems, has joined forces with Fervo Energy , a pioneer in enhanced geothermal systems (EGS), to embark on an ambitious journey towards redefining geothermal energy production. The Cape Station project stands as a testament to this alliance, marking Fervo Energy largest commercial endeavor in the geothermal energy sector to date. Positioned to become a beacon of innovation, Cape Station aims to revolutionize the way we harness energy from beneath the Earth's surface, with an anticipated total project capacity of approximately 400 MW. This endeavor not only symbolizes a transformative leap towards carbon-...