Unlocking the Potential of Geothermal Energy in Germany: GeotIS Introduces First Traffic Light Map for Ground Source Heat Pumps
The pursuit of a sustainable energy future is inseparable from harnessing geothermal energy. But for municipalities and property owners eager to tap into this abundant source of warmth beneath the Earth's surface, where can they find initial information on the potential benefits and how to embark on the journey of geothermal utilization? Researchers from the Leibniz Institute for Applied Geophysics (LIAG) and the University of Göttingen, in collaboration with geological services across Germany, are crafting a nationwide solution. Enter the Geothermal Information System (GeotIS), a freely accessible platform showcasing potential geothermal resources and, through color-coded maps, highlighting areas suitable for installing ground source heat pumps for building heating and cooling purposes. The first "traffic light" map for Mecklenburg-Vorpommern has now been released, with plans underway to cover all federal states by year's end.
Ground source heat pumps, facilitated by boreholes known as ground source heat exchangers, capture the abundant and renewable heat from the Earth. These boreholes, typically around 100 meters deep, house pipe or tube systems cemented in place, through which a fluid circulates in a closed loop, absorbing heat from the ground and transferring it to a heat exchanger in a heat pump. In winter, these ground-coupled heat pumps prove exceptionally efficient as the Earth maintains consistent temperatures, while in summer, they can facilitate building cooling. However, borehole installations face restrictions in certain areas, such as water protection zones.
The introduction of traffic light maps for Germany signifies a unified approach to ground source heat pump installations, starting with Mecklenburg-Vorpommern. Developed within the WärmeGut research project, these maps are based on intricate geological data, continuously researched and analyzed. The aim is to provide comprehensible insights for the general public, with plans to expand coverage nationwide and introduce potential energy yield maps in the future.
"Traffic light maps serve as an inclusive tool for all those interested in geothermal energy," remarks Prof. Dr. Inga Moeck, Head of Geothermal Research at LIAG. She emphasizes the pivotal role of geothermal energy in heating and cooling solutions, crucial for municipal energy transitions. "Our goal is to support municipalities and showcase opportunities with our scientifically curated data," adds Moeck, highlighting the challenge of simplifying complex data for broader understanding. "High-quality heat pumps, especially those coupled with the ground, should be embraced wherever feasible. GeotIS traffic light maps offer a comprehensive overview for this purpose." Detailed information is available through GeotIS, linking users to the web portals of relevant authorities in respective federal states.
GeotIS was showcased at the GeoTherm trade fair in Offenburg from February 29th to March 1st, 2024, at Booth 223 in the Baden-Arena. Additionally, free webinars on platform functionalities will be offered in the future.
Background Information
WärmeGut Research Project
LIAG's WärmeGut research project aligns with the federal government's data campaign aimed at supporting the rollout of ground source heat pumps for the energy transition. This collaborative effort involving LIAG, the Federal Institute for Geosciences and Natural Resources (BGR, Hannover), the University of Göttingen, the University of Applied Sciences Biberach, and geoENERGIE Konzept GmbH (Freiberg) is funded through the BMWK's 7th Energy Research Program. GeotIS data, continually utilized for research and modeling purposes, originated from multiple sources and was initially geared towards deep geothermal exploration. However, the growing demand for shallow geothermal energy, up to 400 meters deep, necessitated GeotIS's expansion and overhaul to include traffic light maps and other information relevant to shallow geothermal energy.
About GeotIS
LIAG's Geothermal Information System is a unique platform nationwide, offering access to cross-sectional views of the subsurface, existing facility overviews, and temperature maps across Germany, free of charge. With a database encompassing over 30,000 boreholes, GeotIS incorporates temperature data from LIAG and structural data from various mapping projects by partners. Its user-friendly interface enables the dynamic generation of interactive maps, integrating technical information with topographic and statistical data. GeotIS also features an information system on deep geothermal sites operational or under construction in Germany.
Read this article to have an indepth overview of Geothermal application Geothermal now applied globally
LIAG and Geothermal Energy
LIAG has been engaged in geothermal research since 1953, producing the first European geothermal atlases. These efforts culminated in GeotIS, serving as a digital information portal for geothermal energy in Germany, consolidating insights from several funded projects.
Source: Alphaxioms
Comments
Post a Comment