Skip to main content

UK Launches Geothermal Platform to Power the Net Zero Future

Unlocking the UK’s Geothermal Future: A New Platform for Decarbonisation

By: Robert Buluma

The UK has just taken a bold step toward a cleaner energy future with the launch of the UK Geothermal Platform, an innovative government-funded initiative designed to highlight geothermal potential across the nation. Developed by the British Geological Survey (BGS) and funded by the Department for Energy Security and Net Zero (DESNZ), this platform is set to become a game-changer in the race to net zero.

What is the UK Geothermal Platform?

At its core, the platform is an interactive map and data hub that brings together a wealth of geoscientific information—spanning national to local scales—about the geothermal resources lying beneath Britain’s surface. From shallow ground-source heat pumps to deep geothermal systems in granites, the tool allows decision makers, developers, and researchers to evaluate the geothermal potential of any area with ease.

Dr. Alison Monaghan, head of geothermal at BGS, emphasizes the significance of the platform: “For the first time, the UK Geothermal Platform makes a large volume of national-scale geothermal data and information available and digitally accessible.”

Four Key Geothermal Technologies

The platform provides an overview of the UK’s potential across four geothermal technologies:

  • Shallow, vertical closed-loop systems (with ground-source heat pumps)
  • Shallow open-loop systems (with ground-source heat pumps)
  • Deep, hot sedimentary aquifers (hydrothermal)
  • Deep, engineered geothermal systems in granites (petrothermal)

Remarkably, the data reveals that closed-loop systems could be deployed almost anywhere across Great Britain, subject to local planning constraints. For example, a single 150 m-deep system could supply up to 15,000 kWh of thermal energy per year—equivalent to the energy output of a typical gas boiler.

Why Does This Matter?

Heating and cooling remain among the biggest challenges in the UK’s energy transition. With geothermal energy, there’s an opportunity to retrofit existing towns, cities, and industrial sites or strategically embed geothermal technology into new developments from the start.

Consider the Liverpool–Manchester–Leeds–Sheffield growth corridor: the platform shows that this region could tap into multiple geothermal options, paving the way for more sustainable urban growth.

A Tool for Everyone

The openly accessible platform isn’t just for policymakers. Regulators, planners, researchers, and developers can all benefit. Its user-friendly explorer tool and integrated data from multiple organisations—including BGS, the Mining Remediation Authority, and the UK Onshore Geophysical Library—make it a comprehensive resource for understanding geothermal opportunities.

A Milestone for Net Zero

As the UK works toward its 2050 net zero target, tools like the Geothermal Platform provide the clarity and confidence needed to invest in sustainable energy solutions. By unlocking the heat beneath our feet, the UK is not only securing its energy future but also taking a meaningful step toward decarbonisation.

Related: Germany Maps 150+ Geothermal Energy Sites

The first release of the platform is just the beginning—marking a milestone moment where technology, science, and policy converge to pave the way for a more resilient, low-carbon future.



Connect with us: X

Comments

Hot Topics 🔥

Vulcan Energy's G-LEP Plant in Landau Paves the Way for Europe's Sustainable Lithium Revolution

Breaking Ground: Vulcan Energy's G-LEP Plant in Landau Paves the Way for Europe's Sustainable Lithium Revolution By: Robert Buluma In the heart of Germany's Rhineland-Palatinate region, a groundbreaking ceremony marked the laying of the foundation stone for the first optimized Geothermal and Lithium Extraction Plant (G-LEP) in Landau, spearheaded by Vulcan Energy Resources, an Australian-German company. As Petra Dick-Walther, State Secretary in the Ministry for Climate Protection, Environment, Energy, and Mobility of Rhineland-Palatinate, described in her recent social media post, this project represents a "quantum leap into the future." It enables the simultaneous extraction of climate-neutral lithium and generation of renewable energy from the hot thermal beds of the Upper Rhine Graben, opening new avenues for Germany's energy transition, supply security, and Europe's sovereignty over critical resources. Lithium, a key component in batteries for electri...

Geo Dipa's Game-Changing Leap: Commercial Silica and Lithium Production from Geothermal Brines by 2028

Geo Dipa's Ambitious Leap: Extracting Silica and Lithium from Geothermal Brines by 2028 Introduction In an era where the global energy transition demands sustainable sources of critical minerals, Indonesia's state-owned PT Geo Dipa Energi ( Persero ) is positioning itself at the forefront of innovation. By 2028, Geo Dipa plans to commence commercial production of silica and lithium extracted from geothermal brines, a byproduct of its geothermal power operations. This initiative not only diversifies the company's revenue streams but also aligns with Indonesia's broader goals of enhancing renewable energy capacity and supporting the electric vehicle (EV) battery supply chain.  Geothermal energy, harnessed from the Earth's heat, produces hot brines rich in dissolved minerals like lithium and silica. Traditionally viewed as waste, these brines are now seen as valuable resources. Geo Dipa's strategy builds on years of feasibility studies and international partnershi...

FINANCING STRATEGIES FOR GEOTHERMAL PROJECTS LEVERAGING TAX CREDIT INCENTIVES

FINANCING STRATEGIES FOR GEOTHERMAL PROJECTS LEVERAGING TAX CREDIT INCENTIVES Aligning Policy, Risk Mitigation, and Investor Capital to Unlock Geothermal Growth Geothermal energy stands at a unique crossroads in the global energy transition. It is one of the few renewable resources capable of delivering continuous, baseload power and heat, independent of weather conditions. Unlike solar and wind, geothermal offers grid stability, industrial heat, and long-term energy security. Yet despite its immense potential, geothermal deployment has historically lagged behind other renewables due to high upfront capital costs, geological uncertainty, and complex financing requirements. In recent years, governments and financial institutions have increasingly turned to **tax credit incentives as a strategic lever to overcome these barriers. By reducing capital expenditure, improving cash flow profiles, and attracting institutional investors, tax credits are reshaping how geothermal projects are fina...

The 2025 U.S. Geothermal Market Report published by the National Laboratory of the Rockies & Geothermal Rising

The 2025 U.S. Geothermal Market Report published by the National Laboratory of the Rockies (NLR, formerly NREL) in collaboration with Geothermal Rising and supported by the U.S. Department of Energy's Geothermal Technologies Office (GTO), provides a comprehensive update on the geothermal sector since the 2021 report.  By:  Robert Buluma Released in 2025 (with data through mid-2025), it expands coverage to include geothermal heat pumps (GHPs) for single-building and district applications, alongside power generation and direct use. The report highlights steady growth in installed capacity, accelerating investment in next-generation technologies like enhanced geothermal systems (EGS) and closed-loop geothermal (CLG), cost declines, policy support, and emerging opportunities driven by demand for reliable, 24/7 clean energy. Geothermal Power Generation: Steady Growth and Momentum U.S. geothermal power has seen consistent expansion, with nameplate installed capacity reaching 3,96...

Switch's Bold Move: 13MW Geothermal PPA with Ormat in Nevada – Game-Changer

Switch's Bold Move: Signing a 13MW Geothermal PPA with Ormat Technologies in Nevada – A Game-Changer for Sustainable Data Centers Image: Ormat Power Plant Posted by Alphaxioms Geothermal News on January 12, 2026 Welcome back to Alphaxioms Geothermal News, your go-to source for all things geothermal energy, innovation, and sustainability. As we kick off 2026, the intersection of renewable energy and high-tech industries is heating up—literally. Today, we're diving deep into a groundbreaking announcement that's set to reshape how data centers power their operations. Global data center operator Switch has inked a 20-year Power Purchase Agreement (PPA) with Ormat Technologies for 13MW of geothermal power from the Salt Wells geothermal power plant in Nevada. This isn't just another deal; it's a pivotal step toward carbon-free, reliable energy for the AI-driven future. In this comprehensive blog post, we'll unpack the details of this agreement, explore the technolog...

13 States Launch Initiative to Accelerate Geothermal Power Development

NASEO Launches Multistate Geothermal Power Accelerator: A Major Step Toward Clean, Reliable Energy By:  Robert Buluma In a significant boost for America's clean energy future, the National Association of State Energy Officials (NASEO) announced on December 18, 2025, the launch of the NASEO Geothermal Power Accelerator. This collaborative initiative brings together 13 states to fast-track the development of geothermal power in partnership with the private sector. Funded by the U.S. Department of Energy’s Geothermal Technologies Office and NASEO itself, the Accelerator aims to unlock the vast potential of geothermal energy a reliable, firm, and flexible source of clean power available around the clock. The participating states are Arizona, California, Colorado, Hawaii, Idaho, Louisiana, Montana, Nevada, New Mexico, Oregon, Pennsylvania, Utah, and West Virginia. These diverse regions, spanning traditional geothermal hotspots in the West to emerging opportunities in the East, will wo...

Amsterdam Strikes Geothermal Gold: Hot, Thick, Permeable Reservoir Confirmed

Breakthrough Beneath the Beach: Amsterdam Region Hits Geothermal Paydirt at Strandeiland By: Robert Buluma The Netherlands just took a giant leap toward fossil-free heating. On the artificial island of Strandeiland (part of Amsterdam’s fast-growing IJburg district), the SCAN exploration well has officially confirmed what the geothermal community has been hoping for: a thick, hot, and , most importantly permeable reservoir in the Slochteren Formation. Key numbers that matter:   Reservoir thickness: 152 meters   Bottom-hole temperature: 66 °C   Permeability: confirmed via successful production and injection tests   That’s not screaming-hot by Icelandic standards, but for direct-use district heating in one of Europe’s densest urban areas, 66 °C is more than enough to supply thousands of homes with clean, baseload heat – forever. Why This Well Changes Everything for the Netherlands The Dutch government launched the SCAN program (Seismic Campaign Nethe...

Banda Baru Geothermal Tender Flops: Zero Bidders Step Forward

Banda Baru Geothermal Survey Tender Fails to Attract Bidders By:  Robert Buluma Indonesia's push toward renewable energy suffered a notable setback in late 2025 when the tender for the Preliminary Survey and Exploration Assignment (WPSPE) of the Banda Baru Sepa geothermal block closed without a single bidder. Located on the remote Seram Island in Maluku Province, this 1,989-hectare site was seen as a promising addition to the nation's geothermal portfolio, with estimated potential of around 25-30 MW. The tender, open from October 31 to December 1, 2025, aimed to assign a developer for initial surveys and exploration, but the lack of interest underscores deep-rooted challenges in attracting investment to Indonesia's geothermal sector. Seram Island, a rugged and largely undeveloped landmass north of Ambon, is characterized by dense rainforests, towering mountains, and limited infrastructure. The Banda Baru block's location amplifies logistical difficulties, making it a to...

GEOLOG Acquires Quad Ltd and QO Inc. to Revamp Wellsite Geology and Pore Pressure Outreach

Revolutionizing the Depths: How GEOLOG's Strategic Acquisition is Supercharging Geothermal Energy's Future By: Robert Buluma Imagine plunging miles beneath the Earth's surface, tapping into an ancient furnace of heat that never sleeps, never falters, and never runs out. This is geothermal energy—the planet's own endless battery, capable of powering civilizations with clean, reliable electricity around the clock. While solar panels go dark at night and wind turbines stand idle in calm air, geothermal delivers baseload power with capacity factors often above 90%. In a world racing toward net-zero emissions and facing exploding energy demands from data centers, electric vehicles, and industrial growth, geothermal is emerging as the sleeping giant ready to awaken. Scaling geothermal globally, however, is no simple task. Drilling deep into the crust exposes crews to extreme conditions: temperatures soaring past 300°C, highly corrosive fluids, and rock so hard it can destroy...

Versailles Powers Its Historic Legacy with Deep Geothermal Energy: A Model for Sustainable Urban Heating

Versailles Embraces Deep Geothermal Energy to Decarbonize Its District Heating Network By Robert Buluma The historic city of Versailles in France's Yvelines department is taking a bold step toward sustainability. On December 18, 2025, Mayor François de Mazières and Franck Lacroix, Deputy Managing Director of Engie , signed a 32-year concession agreement. This partnership entrusts Engie with transforming, modernizing, and greening the city's district heating network, aiming to slash carbon emissions while providing reliable, renewable heat to residents. At the project's core is deep geothermal energy, harnessing the natural heat from underground aquifers. The site targets the Dogger aquifer, a limestone formation from the Middle Jurassic period, located about 1,500 meters below the Paris Basin. Water in this layer reaches temperatures of around 60°C, making it ideal for heating. The plan involves drilling a geothermal doublet two wells: one to extract hot water and another t...