Skip to main content

Fervo Energy and South California Edison Inks A 320 MW PPA Agreement

Fervo Energy Secures Landmark 320 MW Power Purchase Agreements with Southern California Edison

By:Robert Buluma

In a move that underscores the growing demand for sustainable energy solutions, Fervo Energy, a pioneer in next-generation geothermal technology, has announced two monumental power purchase agreements (PPAs) with Southern California Edison (SCE). Totalling 320 MW, these agreements represent the world's largest geothermal PPAs to date, cementing geothermal energy's critical role in the transition to a cleaner energy future.

A Milestone in Clean Energy

Set against the backdrop of California's ambitious clean energy goals, the 15-year agreements will see SCE purchasing 24/7 carbon-free geothermal energy from Fervo's Cape Station project in southwest Utah. This power will serve approximately 350,000 homes across Southern California, bolstering the state's grid reliability with a steady supply of renewable energy.

David Hochschild, Chair of the California Energy Commission, hailed the announcement as a significant step toward achieving the state's zero-carbon electricity goals. "Enhanced geothermal systems complement our abundant wind and solar resources by providing critical base load when those sources are limited," Hochschild noted. "This is key to ensuring reliability as we continue to transition away from fossil fuels."

Driving the Transition to Renewable Firm Power

The California Public Utilities Commission's 2021 mandate for 1,000 MW of non-weather-dependent, zero-emission energy has spurred interest in geothermal power. Unlike solar and wind, geothermal provides firm, consistent energy output, making it an ideal solution for filling the gaps left by variable renewables.

Fervo Energy's innovative approach leverages advanced drilling techniques adapted from the oil and gas industry, significantly reducing costs and accelerating project timelines. Early drilling results at Cape Station have been promising, with faster drilling times and reduced expenses, paving the way for large-scale commercial agreement 

Looking Ahead

Fervo's 400 MW Cape Station project is set to be a cornerstone of this new geothermal era. The first 70 MW phase is expected to be operational by 2026, with the remaining capacity coming online by 2028. This project alone has already contracted 373 MW of renewable power, demonstrating significant progress toward commercialization and large-scale deployment.

Dawn Owens, VP of Development & Commercial Markets at Fervo Energy, emphasized the growing importance of geothermal energy in the U.S. power market. "As electrification increases and climate change burdens already fragile infrastructure, geothermal will play a bigger role," she said. "Fervo is committed to providing firm, clean power to help balance California's energy portfolio."

 Pioneering a Sustainable Future

Fervo Energy has been at the forefront of geothermal innovation, securing pivotal agreements and milestones in the industry. In 2022, Fervo contracted 53 MW of power from Cape Station to California community choice aggregators. The company also made headlines in 2021 by partnering with Google on the world’s first corporate agreement to develop next-generation geothermal power.

With its commercial pilot in Nevada now operational and supplying carbon-free electricity to power Google's data centers, Fervo continues to demonstrate the viability and scalability of geothermal energy.

Utah California has recently been at the forefront when it comes to Geothermal innovation and its no brainer the compton City is hitting the rubicoin

 About Fervo Energy

Fervo Energy is dedicated to providing 24/7 carbon-free energy through the development of next-generation geothermal power. By harnessing advancements in geoscience and drilling technology, Fervo is making geothermal energy cost-competitive and globally scalable. 

Source:Fervo

Connect With Us:Alphaxioms

Comments

Popular posts

Meta and XGS Energy Partner on 150 MW Geothermal Power Project in New Mexico

Meta and XGS Energy Partner on 150 MW Geothermal Power Project in New Mexico A Game-Changer for AI, Clean Energy, and the Future By Robert Buluma – Alphaxioms Energy Blog In a bold move that signals the future of energy and technology convergence, XGS Energy and Meta Platforms, Inc. have announced a groundbreaking agreement to develop 150 megawatts (MW) of next-generation geothermal energy in New Mexico. This partnership not only promises to reshape the state's energy landscape but also underscores the growing demand for sustainable, round-the-clock power to fuel the age of artificial intelligence (AI) and data-driven economies. Clean Power Without Water – XGS’s Unique Edge At the heart of this partnership lies XGS Energy’s proprietary solid-state geothermal technology. Unlike traditional geothermal systems that rely heavily on water and specific geological conditions, XGS’s innovation enables electricity production from hot, dry rock  with zero operating water use. This water-inde...

Driving the UK Toward Net Zero: Chris Sladen on Geothermal’s Untapped Potential

Alphaxioms, we talked to Chris Sladen about his involvement in geothermal both in the UK, and globally By:  Robert Buluma Chris, please begin by explaining a little about yourself, and why you have a passion for geothermal? I have spent over 45 years involved in energy. Following undergraduate studies in geology at Southampton University, and a PhD in sedimentology at Reading University, I joined the energy sector in Aberdeen in 1980. It was a fascinating era when it seemed like at least one giant oil & gas field was discovered offshore every month; the wealth creation for the UK was gigantic. I got to see so much geology and rocks - my true passion. I moved to China in late 1983; not today’s China, this was over 40 years ago, a country closed for decades and embarking on an open-door policy, in part to bring both investment and technology. I became very interested in energy trends, energy politics, and new geography created by changing politics leading to opportunities for ene...

Turboden to Deliver 180 MW of Gen-2 ORC Plants for Fervo’s Cape Station Geothermal Project in Utah

Turboden ,  Fervo and the Future of Geothermal: 180 MW of Gen-2 ORC Plants for Cape Station, Utah By:  Robert Buluma October 2, 2025    In a landmark move for clean energy and geothermal power, Turboden America LLC   the U.S. arm of Turboden S.p.A. (a Mitsubishi Heavy Industries group company)  has been selected to supply 180 MW of Gen-2 Organic Rankine Cycle (ORC) power plants for Fervo Energy’s Cape Station geothermal project in Utah. A New Milestone in Geothermal Deployment This award relates to Phase II of the Cape Station development, following  Turboden’s earlier participation in Phase I. Under Phase II, Turboden will provide three ORC units , each with a gross output of 60 MWe, summing to 180 MWe. Once installed and operational (targeted by 2028), these Gen-2 units will bring the total ORC capacity on site to 300 MWe , making Cape Station one of the largest geothermal installations globally. The earlier Phase I installation, invol...

XGS Energy Achieves 3,000-Hour Milestone in Geothermal Innovation

XGS Energy  Achieves 3,000-Hour Milestone for Water-Independent Geothermal System By : Robert Buluma HOUSTON, Sept 30, 2025 – In a groundbreaking achievement for the geothermal sector, XGS Energy has announced the successful 3,000-hour operation of its water-independent geothermal system at commercial scale. This milestone not only validates the system’s commercial economics but also positions XGS as the first company to demonstrate such technology under real-world, commercial conditions. A New Era in Geothermal Innovation The operations took place at the Coso Geothermal Field in California’s Western Mojave Desert, a site owned by Atlantica Sustainable Infrastructure and operated by Coso Operating Company. XGS Energy  revitalized a well that had been idle for over two decades, installing its proprietary closed-loop geothermal system enhanced by Thermal Reach Enhancement (TRE) technology. Flow testing delivered a record performance, maintaining a sustained temperature differenc...

Geothermal Projects In Africa, Countries Overview

 Geothermal Projects in Africa: Country-wise Overview By : Robert Buluma Africa is increasingly turning to geothermal energy as a sustainable solution to meet its growing electricity demands. With abundant geothermal resources spread across the continent, several countries have embarked on ambitious projects to harness this clean and renewable energy source. Let's delve into the geothermal projects in various African countries, highlighting key players and prospects. Algeria Algeria is exploring its geothermal potential, particularly in the northern regions. Although in the early stages, initiatives are underway to assess feasibility and potential locations for geothermal power plants.  Burundi Burundi has shown interest in developing its geothermal resources, primarily in the northwest region near Lake Tanganyika. The government is actively seeking partnerships with international firms to kickstart exploration and development efforts. Comoros The Comoros Islands are situated ...

From Iceland to the World: A Geothermal Engineer’s Journey

A Global Journey in Geothermal: Insights from an Industry Expert From Iceland’s pioneering geothermal plants to Kenya’s wellhead projects and Indonesia’s remote fields, few By: Robert Buluma Image: Lydur skulason with a geothermal well head  professionals have had as wide-ranging a journey in geothermal as Lydur Skulason With decades of hands-on experience in marine engineering, power plant operations, and international project management, he has combined technical expertise with global collaboration to help shape the sector’s growth. In this conversation, he shares lessons from his career, insights on geothermal innovation, and his vision for the future of clean energy. Career & Experience Can you walk us through your career in geothermal and how it began? I began my career in Iceland, where geothermal energy is a natural part of daily life and a cornerstone of the national energy system. After studying Marine Engineering and Mechanical Technology at  Reykjavik Univ...

Eavor and SLB Partners To Develop Eavor Loop Technology

Eavor  & SLB : Unlocking a Revolution in Clean Energy Production By:  Robert Buluma Image: The SLB & Eavor Team at Geretsried Imagine a world where energy is not only clean but also consistent, dependable, and accessible worldwide. This vision is becoming a reality, thanks to an innovative partnership between  Eavor Technologies and  SLB (formerly Schlumberger). Together, they are pioneering a groundbreaking approach to harnessing renewable energy, promising to redefine how we produce and consume power and heat. At the heart of this collaboration lies Eavor 's revolutionary technology, the Eavor-Loop™, a closed-loop geothermal system that is unlike anything seen before. The partnership reached a critical milestone recently at Getesried, the home of the first commercial Eavor-Loop™, where the SLB and Eavor teams met to celebrate this transformative project. What Is the Eavor-Loop™? The Eavor -Loop™ is a closed-loop geothermal system that eliminates the tradi...

Unlocking Geothermal Power: Subsurface Secrets of Mount Erciyes Revealed”

Mount Erciyes: A Hidden Geothermal Treasure Beneath Cappadocia By: Robert Buluma Beneath the snow-capped slopes of Mount Erciyes , central Turkey’s highest peak, lies more than just volcanic history  it harbors the promise of geothermal energy . A new study published in the Journal of Volcanology and Geothermal Research has mapped the subsurface of Erciyes using three-dimensional magnetotelluric (MT) imaging , revealing zones of high electrical conductivity that point to heat, fluids, and possible magma bodies deep underground. Cracking the Code Beneath the Mountain Researchers led by S.B. Tank used advanced MT techniques to peer beneath Erciyes and its surroundings. Their results uncovered conductivity anomalies   regions where electricity flows more easily due to the presence of saline fluids, hot water, or partially molten rock . For geothermal experts, these anomalies are gold. They act as subsurface fingerprints of geothermal reservoirs , highlighting where heat ...

Cornish Lithium Secures £35M to Advance Geothermal Lithium and Critical Mineral Projects in the UK

Cornish Lithium  Secures £35M in Equity Funding  A Milestone for UK Critical Minerals By:  Robert Buluma In a major boost for the UK’s domestic battery supply ambitions,  Cornish Lithium has announced that it has secured £35 million in new equity funding. This capital raise is intended to propel its key projects closer to construction and commercial stages, marking a pivotal moment in the firm’s trajectory. Backing & Investors The funding round is led by existing institutional backers, with up to £31 million coming from the National Wealth Fund (NWF) , and approximately £4 million from TechMet , a long-standing investor in the company. Cornish Lithium’s legal counsel for the deal was Mayer Brown. What the Funds Will Be Used For Cornish Lithium will allocate the capital toward advancing two flagship projects: Trelavour Lithium Project : The funds will support further engineering work, feasibility studies, and help lead the project toward a construction...

Pertamina Geothermal & Toyota: A New Chapter for Green Hydrogen in Indonesia

Jakarta, September 2025   In a move that could change how Indonesia leverages its enormous geothermal endowment, PT Pertamina Geothermal Energy Tbk  (PGE) and PT  Toyota Motor Manufacturing Indonesia (TMMIN) signed a joint declaration to develop a green hydrogen ecosystem in Indonesia.  By:  Robert Buluma The announcement  made at the 11th Indonesia International Geothermal Convention & Exhibition (IIGCE) in Jakarta  signals an ambition to turn geothermal heat into a strategic feedstock for low-carbon fuels and industrial feedstocks, not just electricity. Why this matters Indonesia sits on some of the world’s richest geothermal resources. Traditionally those resources have been used to generate baseload electricity; PGE’s partnership with Toyota broadens the conversation: use geothermal power and heat to produce green hydrogen, then convert that hydrogen into transport fuels, ammonia, methanol, or industrial hydrogen for heavy industry. That pivot...