Skip to main content

Posts

Innargi Deep: Seismic Surveys Spark Geothermal Heating RevolutionHeading: Łódź DiINNARGI Digs Deep: Seismic Surveys Spark Geothermal Heating Revolutiong Revolution

🌍 Seismic Surveys Kick Off Geothermal Exploration in Łódź Why Łódź is Going Underground for Clean Heat By:  Robert Buluma In an exciting development for climate-focused energy innovation, the Danish company Innargi has teamed up with Veolia Energia Łódź to explore the geothermal potential beneath the city of Łódź, Poland. A letter of intent signed in late 2024 formalized their long-term partnership to decarbonize the city's district heating system by tapping into renewable geothermal resources. Mapping the Earth: What’s Happening & When Starting around August 11, 2025 , seismic surveys are scheduled to begin across four routes covering approximately 160–186 km throughout the city. Specialized vibro‑trucks will send controlled vibrations—lasting roughly 20 seconds—into the ground. These signals are captured by geophones placed in advance along the planned routes. The data will be used to build a detailed subsurface map in just 4 weeks . Survey operations are prima...

Germany Maps 150+ Deep Geothermal Projects, 2000MW Planned

🌍 Germany’s Geothermal Boom: 2,000 MW in the Pipeline as New Map Reveals Over 150 Deep Geothermal Projects By: Robert Buluma Germany is turning up the heat—literally—on its clean energy future. A newly released map from the German Geothermal Energy Association (BVG) shows a dramatic surge in deep geothermal energy projects across the country. Titled "Deep Geothermal Projects in Germany," the map offers a comprehensive snapshot of over 150 geothermal projects currently in planning, with a staggering potential to generate up to 2,000 MW of thermal energy , and in some cases, electricity. 🔍 Current Geothermal Landscape in Germany According to the BVG, there are now: 42 operational deep geothermal plants 31 provide only heat 9 produce both heat and electricity 2 generate electricity exclusively 16 plants currently under construction 155 new plants in the planning phase 8 research facilities 170 thermal baths powered by geothermal sources The currently installed capacity stan...

Ormat's Crescent Valley Geothermal Development Project Secures Green Light in Nevada

🌋 Powering the Future:  Ormat's Crescent Valley Geothermal Development Project Secures Green Light in Nevada 🌱⚡ By  Robert Buluma In a major stride for clean energy advancement, the U.S. Bureau of Land Management (BLM) has completed its environmental assessment and officially approved the Crescent Valley Geothermal Development Project spearheaded by Ormat  Nevada, Inc. This landmark decision—reached on July 16, 2025 —unlocks the potential to generate 30 megawatts of geothermal power from the heart of Crescent Valley , situated between Eureka and Lander Counties in Nevada . 🔍 Project Snapshot Project Name: Crescent Valley Geothermal Development Project Developer:   Ormat Nevada, Inc. Facility Size: ~30 MW (net rated) geothermal power plant Project Footprint: ~2,066 acres on public and private lands Location: Crescent Valley, Battle Mountain, NV (Zip: 89821 & 89820) NEPA Status: Completed Environmental Assessment (DOI-BLM-NV-E020-2025-0010-EA...

Mercury, Contact Lead NZ's Supercritical Geothermal Energy Revolution

🌋 From the Ground Up: New Zealand’s Bold Leap into a Supercharged Geothermal Future By:  Robert Buluma In the heart of New Zealand, beneath the rugged volcanic landscapes and steaming geysers, lies an energy revolution waiting to erupt. On July 30th, 2025, a powerful message echoed from the geothermal capital of the Southern Hemisphere — New Zealand is not just embracing its geothermal potential; it is preparing to unleash it. With the unveiling of the draft strategy titled From the Ground Up , the government, led by Minister Shane Jones for Resources and Regional Development, signaled a transformative shift in how the nation will harness the heat beneath its feet — and it's as ambitious as it is inspiring. 🔥 A Legacy Forged in Steam New Zealand’s geothermal story is deeply rooted in its identity. Long before turbines spun and power grids buzzed, Māori ancestors were using geothermal waters for warmth, healing, and cooking. Geothermal, or waiwhatu , is more than a resource — ...

Margün Energy Taps Turkey’s Geothermal Potential for Lithium Extraction"

Turkish Renewables Company Margün Energy Targets Lithium in Geothermal Waters Location: Seferihisar, İzmir Province, Western Turkey By :  Robert Buluma 🚀 Margün Energy Enters the Lithium Game Margün Energy, a Turkish renewables company, has announced plans to explore lithium extraction from geothermal brine at its newly acquired 12 MW geothermal facility in Kavakdere, Seferihisar. The site lies within a vast 3,125-hectare exploration concession in İzmir that the company intends to analyze for lithium mineral content and other valuable elements. While Margün Energy clarified that it is not a mining company and has not applied for mining licenses, it emphasized that direct extraction from geothermal fluid is fundamentally different from conventional mining. If sufficient lithium concentrations are confirmed, Margün plans to build an on-site extraction plant integrated with its geothermal operations. 🌞 Hybrid Power Boost In tandem with its geothermal initiative, Margün is pursuing a...

Arunachal Pradesh to Host India’s First Fully Indigenous 50 kW Geothermal Power Plant

Itanagar, Arunachal Pradesh — In a landmark initiative for renewable energy innovation, India is set to commission its first fully indigenous 50 kW geothermal power plant in the Himalayan state of Arunachal Pradesh. By:  Robert Buluma Why it matters Operating at an unusually low geothermal temperature of just 68 °C , the project showcases India’s capability to harness Earth’s heat even at smaller scales. Designed to benefit about 5,000 residents in remote communities of Tawang district—Mago, Thingbu, and Damteng—it represents a decentralized model for clean energy supply. Who’s behind it The Centre for Earth Sciences and Himalayan Studies (CESHS) and Shriram Institute for Industrial Research (SIIR) have formalized their collaboration to carry the project forward. Their earlier work includes a 20 kW pilot using the same indigenous bipolar-process technology, preceded by trials with a 5 kW lab-scale model. Tech innovation at the core According to project insiders, trial campaigns ...

Stanford’s Smart Cement Could Revolutionize Geothermal Energy”

Stanford  Engineers Unveil a Game-Changer: Smart Cement for Geothermal Wells By:  Robert Buluma In the ever-evolving journey toward a cleaner, more sustainable energy future, geothermal energy continues to rise as a powerful ally. But while the heat beneath our feet is abundant, safely and efficiently tapping into it isn’t always straightforward. Now,  Stanford University researchers may have just cracked a key challenge—with a material innovation that could transform the geothermal industry forever. 💡 The Problem: Cement Cracks and the Risk It Poses In geothermal wells, cement is used to seal and stabilize boreholes. But here’s the catch: high underground temperatures and pressures can cause traditional cement to crack over time. These micro-cracks can lead to serious risks—fluid leaks, well failure, environmental hazards, and even safety concerns for workers and communities. 🧠 The Solution: Stanford’s “Smart Cement” A team of  Stanford engineers, led by res...