Skip to main content

Margün Energy Taps Turkey’s Geothermal Potential for Lithium Extraction"

Turkish Renewables Company Margün Energy Targets Lithium in Geothermal Waters
Location: Seferihisar, İzmir Province, Western Turkey


🚀 Margün Energy Enters the Lithium Game
Margün Energy, a Turkish renewables company, has announced plans to explore lithium extraction from geothermal brine at its newly acquired 12 MW geothermal facility in Kavakdere, Seferihisar. The site lies within a vast 3,125-hectare exploration concession in İzmir that the company intends to analyze for lithium mineral content and other valuable elements.
While Margün Energy clarified that it is not a mining company and has not applied for mining licenses, it emphasized that direct extraction from geothermal fluid is fundamentally different from conventional mining. If sufficient lithium concentrations are confirmed, Margün plans to build an on-site extraction plant integrated with its geothermal operations.

🌞 Hybrid Power Boost
In tandem with its geothermal initiative, Margün is pursuing a hybrid model. A 5.4 MW photovoltaic (solar) unit has been proposed to be added to the existing geothermal plant. This is expected to produce around 10 GWh annually, potentially increasing annual revenues by over a million dollars. Once complete, Margün’s total installed capacity will reach 135.4 MW, spanning hydropower, wind, solar, and geothermal energy through its affiliate, Enda Energy Holding.

🔋 Turkey’s Geothermal Mineral Vision
Turkey already ranks among the global leaders in geothermal energy, with 65 operational plants contributing around 1.74 GW to the national grid. Yet, the country is only utilizing an estimated 10% of its full geothermal potential. Over 1,000 wells across the nation generate approximately 100,000 tons of brine per hour, containing lithium in concentrations of about 20 parts per million.
With these figures, it's estimated that lithium extraction from geothermal brine could yield up to 35,000 tons annually—more than enough to cover Turkey’s domestic demand and position the country as a significant global player in lithium production.

⚙️ Tech Innovation & Strategic Synergy
Extracting lithium alongside geothermal energy production offers a dual-revenue model—electricity and battery-grade materials—with minimal additional environmental impact. Compared to conventional mining, direct lithium extraction bypasses the need for evaporation ponds and reduces land and water disruption.
This strategy aligns with broader energy and industrial transitions happening in countries pursuing net-zero goals, where geothermal resources are being reimagined as not only a source of clean power but also a reservoir for critical minerals.

🌱 Economic & Environmental Upside
Integrating lithium recovery into geothermal operations can dramatically improve the economics of such projects, reducing payback periods and unlocking additional value from existing infrastructure. The extracted lithium comes from brine already being pumped for energy, which means no new environmental disturbance is necessary.
This approach also supports Turkey’s ambitions for building domestic EV battery supply chains, complementing its robust auto manufacturing industry. Experts estimate that Turkey’s geothermal lithium reserves could supply domestic lithium needs for decades while generating billions in export revenue.

⚠️ Challenges & Local Sentiment
Despite the promise, local residents in Seferihisar have raised environmental concerns. While the project differs fundamentally from traditional mining operations, public awareness and community engagement will be key to maintaining support.
One technical challenge is the relatively low concentration of lithium in geothermal brine. Effective and sustainable extraction will depend on the development and deployment of advanced, low-impact technologies for direct lithium extraction.

🧭 What’s Next?
Margün Energy plans to proceed with field testing and sampling to determine the economic viability of lithium extraction. If the results are favorable, a pilot extraction plant may be constructed as part of the existing geothermal infrastructure.
At the national level, Turkey is working toward increasing its geothermal capacity to 3 GW by 2030, backed by a combination of international financing and domestic investment. Lithium extraction from geothermal brine may become a powerful catalyst for reaching that goal while contributing to the global clean energy supply chain.

✅ Conclusion
Margün Energy’s bold move signals a new frontier in clean energy. By transforming geothermal sites into dual-purpose assets—delivering both renewable power and strategic minerals—the company is helping redefine what’s possible in the energy transition.
This is more than geothermal. It’s geothermal with purpose, powering the future from the deep earth below.

Source: Balkan Energy

Connect with us:  LinkedIn , X
 

Comments

Hot Topics 🔥

Vulcan Energy's G-LEP Plant in Landau Paves the Way for Europe's Sustainable Lithium Revolution

Breaking Ground: Vulcan Energy's G-LEP Plant in Landau Paves the Way for Europe's Sustainable Lithium Revolution By: Robert Buluma In the heart of Germany's Rhineland-Palatinate region, a groundbreaking ceremony marked the laying of the foundation stone for the first optimized Geothermal and Lithium Extraction Plant (G-LEP) in Landau, spearheaded by Vulcan Energy Resources, an Australian-German company. As Petra Dick-Walther, State Secretary in the Ministry for Climate Protection, Environment, Energy, and Mobility of Rhineland-Palatinate, described in her recent social media post, this project represents a "quantum leap into the future." It enables the simultaneous extraction of climate-neutral lithium and generation of renewable energy from the hot thermal beds of the Upper Rhine Graben, opening new avenues for Germany's energy transition, supply security, and Europe's sovereignty over critical resources. Lithium, a key component in batteries for electri...

FINANCING STRATEGIES FOR GEOTHERMAL PROJECTS LEVERAGING TAX CREDIT INCENTIVES

FINANCING STRATEGIES FOR GEOTHERMAL PROJECTS LEVERAGING TAX CREDIT INCENTIVES Aligning Policy, Risk Mitigation, and Investor Capital to Unlock Geothermal Growth Geothermal energy stands at a unique crossroads in the global energy transition. It is one of the few renewable resources capable of delivering continuous, baseload power and heat, independent of weather conditions. Unlike solar and wind, geothermal offers grid stability, industrial heat, and long-term energy security. Yet despite its immense potential, geothermal deployment has historically lagged behind other renewables due to high upfront capital costs, geological uncertainty, and complex financing requirements. In recent years, governments and financial institutions have increasingly turned to **tax credit incentives as a strategic lever to overcome these barriers. By reducing capital expenditure, improving cash flow profiles, and attracting institutional investors, tax credits are reshaping how geothermal projects are fina...

The 2025 U.S. Geothermal Market Report published by the National Laboratory of the Rockies & Geothermal Rising

The 2025 U.S. Geothermal Market Report published by the National Laboratory of the Rockies (NLR, formerly NREL) in collaboration with Geothermal Rising and supported by the U.S. Department of Energy's Geothermal Technologies Office (GTO), provides a comprehensive update on the geothermal sector since the 2021 report.  By:  Robert Buluma Released in 2025 (with data through mid-2025), it expands coverage to include geothermal heat pumps (GHPs) for single-building and district applications, alongside power generation and direct use. The report highlights steady growth in installed capacity, accelerating investment in next-generation technologies like enhanced geothermal systems (EGS) and closed-loop geothermal (CLG), cost declines, policy support, and emerging opportunities driven by demand for reliable, 24/7 clean energy. Geothermal Power Generation: Steady Growth and Momentum U.S. geothermal power has seen consistent expansion, with nameplate installed capacity reaching 3,96...

Geo Dipa's Game-Changing Leap: Commercial Silica and Lithium Production from Geothermal Brines by 2028

Geo Dipa's Ambitious Leap: Extracting Silica and Lithium from Geothermal Brines by 2028 Introduction In an era where the global energy transition demands sustainable sources of critical minerals, Indonesia's state-owned PT Geo Dipa Energi ( Persero ) is positioning itself at the forefront of innovation. By 2028, Geo Dipa plans to commence commercial production of silica and lithium extracted from geothermal brines, a byproduct of its geothermal power operations. This initiative not only diversifies the company's revenue streams but also aligns with Indonesia's broader goals of enhancing renewable energy capacity and supporting the electric vehicle (EV) battery supply chain.  Geothermal energy, harnessed from the Earth's heat, produces hot brines rich in dissolved minerals like lithium and silica. Traditionally viewed as waste, these brines are now seen as valuable resources. Geo Dipa's strategy builds on years of feasibility studies and international partnershi...

Switch's Bold Move: 13MW Geothermal PPA with Ormat in Nevada – Game-Changer

Switch's Bold Move: Signing a 13MW Geothermal PPA with Ormat Technologies in Nevada – A Game-Changer for Sustainable Data Centers Image: Ormat Power Plant Posted by Alphaxioms Geothermal News on January 12, 2026 Welcome back to Alphaxioms Geothermal News, your go-to source for all things geothermal energy, innovation, and sustainability. As we kick off 2026, the intersection of renewable energy and high-tech industries is heating up—literally. Today, we're diving deep into a groundbreaking announcement that's set to reshape how data centers power their operations. Global data center operator Switch has inked a 20-year Power Purchase Agreement (PPA) with Ormat Technologies for 13MW of geothermal power from the Salt Wells geothermal power plant in Nevada. This isn't just another deal; it's a pivotal step toward carbon-free, reliable energy for the AI-driven future. In this comprehensive blog post, we'll unpack the details of this agreement, explore the technolog...

13 States Launch Initiative to Accelerate Geothermal Power Development

NASEO Launches Multistate Geothermal Power Accelerator: A Major Step Toward Clean, Reliable Energy By:  Robert Buluma In a significant boost for America's clean energy future, the National Association of State Energy Officials (NASEO) announced on December 18, 2025, the launch of the NASEO Geothermal Power Accelerator. This collaborative initiative brings together 13 states to fast-track the development of geothermal power in partnership with the private sector. Funded by the U.S. Department of Energy’s Geothermal Technologies Office and NASEO itself, the Accelerator aims to unlock the vast potential of geothermal energy a reliable, firm, and flexible source of clean power available around the clock. The participating states are Arizona, California, Colorado, Hawaii, Idaho, Louisiana, Montana, Nevada, New Mexico, Oregon, Pennsylvania, Utah, and West Virginia. These diverse regions, spanning traditional geothermal hotspots in the West to emerging opportunities in the East, will wo...

Banda Baru Geothermal Tender Flops: Zero Bidders Step Forward

Banda Baru Geothermal Survey Tender Fails to Attract Bidders By:  Robert Buluma Indonesia's push toward renewable energy suffered a notable setback in late 2025 when the tender for the Preliminary Survey and Exploration Assignment (WPSPE) of the Banda Baru Sepa geothermal block closed without a single bidder. Located on the remote Seram Island in Maluku Province, this 1,989-hectare site was seen as a promising addition to the nation's geothermal portfolio, with estimated potential of around 25-30 MW. The tender, open from October 31 to December 1, 2025, aimed to assign a developer for initial surveys and exploration, but the lack of interest underscores deep-rooted challenges in attracting investment to Indonesia's geothermal sector. Seram Island, a rugged and largely undeveloped landmass north of Ambon, is characterized by dense rainforests, towering mountains, and limited infrastructure. The Banda Baru block's location amplifies logistical difficulties, making it a to...

Geothermal Power Play: Well Engineering Partners Takes Over Operations as Sproule ERCE Sharpens Advisory Focus

The geothermal energy sector is heating up literally and figuratively and a recent strategic move is set to accelerate progress in sustainable energy production. By: Robert Buluma Effective January 1, 2026, Well Engineering Partners (WEP) acquired the operational and production-focused geothermal activities from Sproule ERC (formerly associated with Veegeo). This acquisition marks a smart realignment of strengths in the booming geothermal market, where clean, reliable baseload energy is increasingly vital for the global energy transition. Imagine harnessing the Earth's natural heat to power homes, industries, and cities without the intermittency of solar or wind. Geothermal energy does exactly that, providing constant output from deep underground reservoirs. But turning that potential into reality requires specialized expertise from initial resource assessment to long-term well maintenance. That's where this deal shines: it allows each company to double down on what they do b...

Versailles Powers Its Historic Legacy with Deep Geothermal Energy: A Model for Sustainable Urban Heating

Versailles Embraces Deep Geothermal Energy to Decarbonize Its District Heating Network By Robert Buluma The historic city of Versailles in France's Yvelines department is taking a bold step toward sustainability. On December 18, 2025, Mayor François de Mazières and Franck Lacroix, Deputy Managing Director of Engie , signed a 32-year concession agreement. This partnership entrusts Engie with transforming, modernizing, and greening the city's district heating network, aiming to slash carbon emissions while providing reliable, renewable heat to residents. At the project's core is deep geothermal energy, harnessing the natural heat from underground aquifers. The site targets the Dogger aquifer, a limestone formation from the Middle Jurassic period, located about 1,500 meters below the Paris Basin. Water in this layer reaches temperatures of around 60°C, making it ideal for heating. The plan involves drilling a geothermal doublet two wells: one to extract hot water and another t...

Rodatherm Energy: Pioneering Closed Loop Geothermal in Utah

Revolutionizing Geothermal Energy: Rodatherm's Game-Changing Approach in Utah Posted by Alphaxioms Geothermal News on January 17, 2026 Utah-based Rodatherm Energy Corporation has revolutionized the geothermal energy equation, and venture capitalists have taken note. With pilot projects planned for Millard County and Beaver County, the company has what founder and CEO Curtis Cook calls “a novel approach” to geothermal technology. In a world racing toward sustainable energy solutions, geothermal power has long been a reliable but underutilized player. Traditional geothermal systems rely on water to extract heat from the Earth's depths, often limiting their deployment to remote, sparsely populated areas due to environmental concerns and high costs. But Rodatherm is flipping the script with its innovative, waterless closed-loop system that promises efficiency, scalability, and minimal environmental impact. At the heart of Rodatherm's technology is what Cook describes as ...