Skip to main content

$14.2 Million Announced Subsequently by US DOE For Enhanced Geothermal Pilot Projects

Unleashing the Power Beneath: The Second-Round EGS Pilot Demonstrations

By: Robert Buluma

image:wells of power at Kenyan Geothermal Field gushing steam

Geothermal energy is a game-changer in the quest for sustainable and reliable energy sources. The U.S. Department of Energy (DOE) is pushing the boundaries of this potential through its Geothermal Technologies Office (GTO). With the second round of funding opportunities for Enhanced Geothermal Systems (EGS) pilot demonstrations, authorized under President Biden's Bipartisan Infrastructure Law, the future of geothermal energy looks brighter than ever. This initiative aims to catapult EGS into the mainstream, contributing significantly to the goal of a carbon pollution-free electricity system by 2035.

 What Are Enhanced Geothermal Systems (EGS)?

Enhanced Geothermal Systems (EGS) represent a cutting-edge approach to geothermal energy. Unlike traditional geothermal systems that rely on naturally occurring hydrothermal resources, EGS creates man-made geothermal reservoirs. By injecting fluid into hot rock formations, EGS enhances the permeability of these rocks, allowing heat to be extracted and converted into electricity or used for heating purposes.

The Second-Round Funding Opportunity

The second-round funding opportunity, identified as DE-FOA-0002826, comes with a substantial $14.2 million up for grabs. This initiative aims to support a variety of pilot projects that demonstrate EGS in different geologic settings. These projects will help advance EGS towards achieving DOE’s ambitious Enhanced Geothermal Shot™ and GeoVision analysis goals. The ultimate objective is to harness 90 gigawatts of domestic electricity-generating capacity by 2050, enough to power over 65 million American homes.

Key dates for this funding opportunity are:

- Letters of Intent Due: July 18, 2024

- Full Applications Due: September 25, 2024

- Selection Notifications: December 2024

- Award Negotiations: January 2025

Objectives and Benefits

The economic viability of EGS hinges on developing and improving technologies to understand the subsurface, including geological qualities and permeability. By supporting EGS pilot demonstrations, the DOE aims to:

Model Reliability and Performance: Prove the reliability and performance of EGS technologies, ultimately reducing risks associated with their development.

Learn-by-Doing: Utilize pilot projects to identify new challenges that might not be evident at smaller, lab-based scales.

Validate Design Approaches: Test hypotheses and validate design approaches tailored to specific geological conditions.

Standardize Best Practices: Establish best practices and general operational processes through collaboration.

Market Connection: Begin connecting with consumers and off-takers to understand their needs, helping define the market for geothermal energy.

Focus on the Eastern United States

The second-round funding opportunity is particularly focused on Topic Area 4, which seeks to demonstrate EGS at a well-characterized site in the eastern United States with potential for near-term electricity or thermal power production. This focus aims to diversify the geographic and geological applicability of EGS, paving the way for broader development and implementation.

Get Involved

If you're interested in this transformative opportunity, review the second-round FOA Quick Guide for eligibility details and application instructions. Explore the Teaming Partner List if you wish to form a partnership to apply

The second-round EGS pilot demonstrations represent a pivotal step towards unlocking the full potential of geothermal energy. By fostering innovation, collaboration, and practical implementation, these projects will not only drive technological advancements but also contribute significantly to the nation's clean energy goals. Don’t miss the chance to be part of this groundbreaking journey towards a sustainable energy future.


For more information and to stay updated, visit the Geothermal Technologies Office page on Energy.gov.

Source:Energy Gov

Connect With Us :Alphaxioms

Comments

Popular posts

Meta and XGS Energy Partner on 150 MW Geothermal Power Project in New Mexico

Meta and XGS Energy Partner on 150 MW Geothermal Power Project in New Mexico A Game-Changer for AI, Clean Energy, and the Future By Robert Buluma – Alphaxioms Energy Blog In a bold move that signals the future of energy and technology convergence, XGS Energy and Meta Platforms, Inc. have announced a groundbreaking agreement to develop 150 megawatts (MW) of next-generation geothermal energy in New Mexico. This partnership not only promises to reshape the state's energy landscape but also underscores the growing demand for sustainable, round-the-clock power to fuel the age of artificial intelligence (AI) and data-driven economies. Clean Power Without Water – XGS’s Unique Edge At the heart of this partnership lies XGS Energy’s proprietary solid-state geothermal technology. Unlike traditional geothermal systems that rely heavily on water and specific geological conditions, XGS’s innovation enables electricity production from hot, dry rock  with zero operating water use. This water-inde...

INTERVIEW, Geretsried and Beyond: Eavor’s Blueprint for Reliable, Sustainable Energy

Robert Buluma :  Alphaxioms Responses were provided by Jeanine Vany, Executive Vice-President of Corporate Affairs, Eavor . Can you explain the key technological advancements in the latest iteration of the Eavor-Loop™ system? We have made a number of technological advancements at our project in Geretsried Germany . This includes innovation and learning resulting in dramatic improvements in our drilling performance and we’re proud to talk about our technology. For example, Eavor recently announced successful implementation of our in-house AMR (active magnetic ranging) tool which makes drilling more accurate and efficient. Eavor-Link™ AMR uses magnetic ranging while drilling to maintain constant alignment as it drills two wells at approximately 100 metres apart before they are intersected to create a continuous geothermal loop, which is then sealed with Eavor’s proprietary Rock-Pipe™ formula. With real-time data transmission between downhole sensors, the technology ensures tighter bo...

Driving the UK Toward Net Zero: Chris Sladen on Geothermal’s Untapped Potential

Alphaxioms, we talked to Chris Sladen about his involvement in geothermal both in the UK, and globally By:  Robert Buluma Chris, please begin by explaining a little about yourself, and why you have a passion for geothermal? I have spent over 45 years involved in energy. Following undergraduate studies in geology at Southampton University, and a PhD in sedimentology at Reading University, I joined the energy sector in Aberdeen in 1980. It was a fascinating era when it seemed like at least one giant oil & gas field was discovered offshore every month; the wealth creation for the UK was gigantic. I got to see so much geology and rocks - my true passion. I moved to China in late 1983; not today’s China, this was over 40 years ago, a country closed for decades and embarking on an open-door policy, in part to bring both investment and technology. I became very interested in energy trends, energy politics, and new geography created by changing politics leading to opportunities for ene...

EAPOSYS and Halliburton Unite to Supercharge the Future of Advanced Geothermal Systems

EAPOSYS  Partners with  Halliburton to Accelerate the Deployment of Advanced Geothermal Systems By:  Robert Buluma Biel/Bienne, Switzerland – October 10th, 2025  The race toward a sustainable energy future just got hotter. EAPOSYS SA, a Swiss geothermal innovation company, has joined forces with Halliburton (NYSE: HAL) to fast-track the deployment of its groundbreaking Advanced Geothermal Systems (AGS) . Under the newly signed agreement, Halliburton will conduct a subsurface feasibility study to evaluate and optimize the scalability of EAPOSYS’s patented closed-loop geothermal architecture. This collaboration will refine well designs, assess stratigraphic conditions, and minimize drilling risks  paving the way for the industrial-scale rollout of clean, predictable geothermal energy . “EAPOSYS SA has developed an innovative, patented, closed-loop architecture to deploy AGS anywhere in the world,” said Naomi Vouillamoz , CEO and co-founder of EAPOSYS. “AGS ...

Utah and New Zealand Join Forces to Supercharge Geothermal Energy Innovation under “Operation Gigawatt”

A New Chapter in Geothermal Diplomacy: Utah & New Zealand Seal Geothermal Pact By:  Robert Buluma In October 2025, a significant milestone was achieved when Spencer Cox, Governor of Utah, and Simon Watts, New Zealand’s Minister for Energy, signed a Letter of Intent in Auckland. The agreement formalises cooperation between Utah and New Zealand, with a special focus on developing geothermal energy as part of their shared goal to expand and diversify clean energy generation. Key Elements of the Agreement The newly signed agreement aims to strengthen collaboration in energy generation, diversification, and innovation — with geothermal energy taking center stage. The partnership also aligns with Utah’s broader mission, Operation Gigawatt , which seeks to create energy abundance through the development of renewable and advanced energy technologies. This signing was part of a wider trade and innovation mission involving cooperation in sectors such as critical minerals, clean energy, ...

Geothermal Projects In Africa, Countries Overview

 Geothermal Projects in Africa: Country-wise Overview By : Robert Buluma Africa is increasingly turning to geothermal energy as a sustainable solution to meet its growing electricity demands. With abundant geothermal resources spread across the continent, several countries have embarked on ambitious projects to harness this clean and renewable energy source. Let's delve into the geothermal projects in various African countries, highlighting key players and prospects. Algeria Algeria is exploring its geothermal potential, particularly in the northern regions. Although in the early stages, initiatives are underway to assess feasibility and potential locations for geothermal power plants.  Burundi Burundi has shown interest in developing its geothermal resources, primarily in the northwest region near Lake Tanganyika. The government is actively seeking partnerships with international firms to kickstart exploration and development efforts. Comoros The Comoros Islands are situated ...

Mastering the Subsurface: Insights from a Geothermal Reservoir Engineer

Geothermal energy is often called the “quiet backbone” of the clean energy transition. To understand the science, challenges, and innovations driving this sector, we spoke with a seasoned geothermal reservoir engineer with experience spanning the Andes, Nevada, Utah, and volcanic fields worldwide. Here’s what they shared. By:  Robert Buluma 1. What sparked your passion for geothermal reservoir engineering, and did you ever imagine yourself working in some of the world’s most challenging geothermal fields? My passion was sparked during my early career in the petroleum industry, specifically in reservoirs. I was fascinated by the subsurface—how fluids move, how heat and pressure interact but it wasn’t until I worked on projects in Peru that I realized geothermal offered the chance to apply my skills to clean energy. I never imagined I would later work on Enhanced Geothermal Systems (EGS) projects in Nevada and Utah or Andean volcanic fields, where the geology is as unforgiving as it ...

XGS Energy Achieves 3,000-Hour Milestone in Geothermal Innovation

XGS Energy  Achieves 3,000-Hour Milestone for Water-Independent Geothermal System By : Robert Buluma HOUSTON, Sept 30, 2025 – In a groundbreaking achievement for the geothermal sector, XGS Energy has announced the successful 3,000-hour operation of its water-independent geothermal system at commercial scale. This milestone not only validates the system’s commercial economics but also positions XGS as the first company to demonstrate such technology under real-world, commercial conditions. A New Era in Geothermal Innovation The operations took place at the Coso Geothermal Field in California’s Western Mojave Desert, a site owned by Atlantica Sustainable Infrastructure and operated by Coso Operating Company. XGS Energy  revitalized a well that had been idle for over two decades, installing its proprietary closed-loop geothermal system enhanced by Thermal Reach Enhancement (TRE) technology. Flow testing delivered a record performance, maintaining a sustained temperature differenc...

"Zanskar's Lightning Dock Triumph: Redefining Geothermal Energy Potential"

Zanskar's Lightning Dock: A Game-Changer for Geothermal Energy By: Robert Buluma In a bold move that underscores their unwavering commitment to geothermal energy innovation, Zanskar has made headlines with a groundbreaking development at the Lightning Dock geothermal power plant. Betting on an underperforming resource, the company has not only turned the site around but delivered a world-beating gusher that validates their ambitious vision.   The Rise of Lightning Dock Zanskar's strategy has always been clear: harness modern data collection techniques and advanced statistical tools to unlock geothermal sites previously overlooked by the industry. Their efforts over the past three years have led to the discovery of numerous potential hotspots, proving that geothermal has far more untapped potential than previously believed.   Together with XGS energy, Zanskar is well poised to redefine the geothermal energy drilling sector with proven breakthroughs and a financial mus...

Turboden to Deliver 180 MW of Gen-2 ORC Plants for Fervo’s Cape Station Geothermal Project in Utah

Turboden ,  Fervo and the Future of Geothermal: 180 MW of Gen-2 ORC Plants for Cape Station, Utah By:  Robert Buluma October 2, 2025    In a landmark move for clean energy and geothermal power, Turboden America LLC   the U.S. arm of Turboden S.p.A. (a Mitsubishi Heavy Industries group company)  has been selected to supply 180 MW of Gen-2 Organic Rankine Cycle (ORC) power plants for Fervo Energy’s Cape Station geothermal project in Utah. A New Milestone in Geothermal Deployment This award relates to Phase II of the Cape Station development, following  Turboden’s earlier participation in Phase I. Under Phase II, Turboden will provide three ORC units , each with a gross output of 60 MWe, summing to 180 MWe. Once installed and operational (targeted by 2028), these Gen-2 units will bring the total ORC capacity on site to 300 MWe , making Cape Station one of the largest geothermal installations globally. The earlier Phase I installation, invol...