Skip to main content

COWI TO DESIGN 100 MW ICELAND GEOTHERMAL PLANT

Cowi to Spearhead 100MW Geothermal Power Plant Expansion in Iceland: A Leap Toward Renewable Innovation

By: Robert Buluma

In a major stride toward sustainable energy development, Cowi, a leading engineering firm, has secured the design contract for the expansion of the Hellisheidi Geothermal Power Plant in Iceland. This ambitious project, driven by ON Power, will see the plant's capacity increase by 100MW, further solidifying Iceland's commitment to harnessing its geothermal potential. 

The Hellisheidi plant, located just 18km from Reykjavik, serves as a cornerstone for Iceland's energy landscape, providing both electricity and hot water for domestic heating. With the ongoing expansion, the plant’s heating output will rise from 200MW to 300MW, ensuring more homes and businesses in Reykjavik benefit from geothermal energy.

A Legacy of Excellence

Cowi's involvement in the Hellisheidi project dates back to its early phases, when the firm, formerly known as Mannvit in Iceland, was instrumental in the plant's initial design and construction. Having been selected for this new phase from a pool of three bidders, Cowi will be responsible for overseeing the engineering design, preparing tender documents, and providing support through to the project's commissioning in 2026.

This new expansion is poised to enhance Hellisheidi’s existing output of 303MW of electricity and 200MW of thermal energy. The plant is not only Iceland's largest geothermal combined heat and power (CHP) facility but also ranks as the fourth-largest geothermal power plant in the world.

The Science Behind Flash Steam CHP

The Hellisheidi plant operates using flash steam technology, a complex but highly efficient process for generating both electricity and heat. Geothermal fluid is extracted from production wells and piped to a central separation station. Here, steam is separated from water under high pressure and sent to turbines, where it generates electricity. The water, in turn, is flashed at lower pressures to produce additional steam, which powers more turbines. The remaining water is used in heat exchangers to produce the hot water that is piped to Reykjavik for district heating.

Once the water has been used, it is pumped back into the earth via re-injection wells, making the entire process as sustainable as possible.

Expanding Iceland's Geothermal Horizons

The expansion project is not just a technical upgrade—it represents Iceland’s commitment to maximizing its geothermal potential. Hellisheidi is located in the Hengill geothermal area, an active volcanic ridge that spans 112 square kilometers. The geothermal activity in this region is linked to three volcanic systems, making it one of the largest geothermal areas in Iceland.

Base Load Capital, Icelandic affiliated company just recently minted Big in Geothermal and Its awesome that Geothermal is not just the Future but an eternity

As the world continues to search for sustainable and clean energy solutions, projects like Hellisheidi are vital examples of how countries can leverage their natural resources to reduce carbon footprints.  Cowi'scontinued involvement in this project underscores its expertise in geothermal energy, a field that is rapidly gaining attention worldwide.

With the Hellisheidi plant expansion, Iceland is taking a bold step forward in renewable energy. As Cowi leads the engineering design, the project sets a benchmark for future geothermal developments, not only in Iceland but globally. The world will be watching as this pioneering project unfolds, proving that geothermal energy is key to a greener future.

Get a glimpse of the facts on this unique power plant.

By 2026, the expanded Hellisheidi plant will stand as a testament to Iceland’s leadership in geothermal energy and the engineering prowess of Cowi.

Researched and Written by Alphaxioms

Connect with us: LinkedIn. ,X Formely Twitter

This recently published Tender in Geothermal is intriguingly captivating


Comments

Hot Topics 🔥

Vulcan Energy's G-LEP Plant in Landau Paves the Way for Europe's Sustainable Lithium Revolution

Breaking Ground: Vulcan Energy's G-LEP Plant in Landau Paves the Way for Europe's Sustainable Lithium Revolution By: Robert Buluma In the heart of Germany's Rhineland-Palatinate region, a groundbreaking ceremony marked the laying of the foundation stone for the first optimized Geothermal and Lithium Extraction Plant (G-LEP) in Landau, spearheaded by Vulcan Energy Resources, an Australian-German company. As Petra Dick-Walther, State Secretary in the Ministry for Climate Protection, Environment, Energy, and Mobility of Rhineland-Palatinate, described in her recent social media post, this project represents a "quantum leap into the future." It enables the simultaneous extraction of climate-neutral lithium and generation of renewable energy from the hot thermal beds of the Upper Rhine Graben, opening new avenues for Germany's energy transition, supply security, and Europe's sovereignty over critical resources. Lithium, a key component in batteries for electri...

Geo Dipa's Game-Changing Leap: Commercial Silica and Lithium Production from Geothermal Brines by 2028

Geo Dipa's Ambitious Leap: Extracting Silica and Lithium from Geothermal Brines by 2028 Introduction In an era where the global energy transition demands sustainable sources of critical minerals, Indonesia's state-owned PT Geo Dipa Energi ( Persero ) is positioning itself at the forefront of innovation. By 2028, Geo Dipa plans to commence commercial production of silica and lithium extracted from geothermal brines, a byproduct of its geothermal power operations. This initiative not only diversifies the company's revenue streams but also aligns with Indonesia's broader goals of enhancing renewable energy capacity and supporting the electric vehicle (EV) battery supply chain.  Geothermal energy, harnessed from the Earth's heat, produces hot brines rich in dissolved minerals like lithium and silica. Traditionally viewed as waste, these brines are now seen as valuable resources. Geo Dipa's strategy builds on years of feasibility studies and international partnershi...

The 2025 U.S. Geothermal Market Report published by the National Laboratory of the Rockies & Geothermal Rising

The 2025 U.S. Geothermal Market Report published by the National Laboratory of the Rockies (NLR, formerly NREL) in collaboration with Geothermal Rising and supported by the U.S. Department of Energy's Geothermal Technologies Office (GTO), provides a comprehensive update on the geothermal sector since the 2021 report.  By:  Robert Buluma Released in 2025 (with data through mid-2025), it expands coverage to include geothermal heat pumps (GHPs) for single-building and district applications, alongside power generation and direct use. The report highlights steady growth in installed capacity, accelerating investment in next-generation technologies like enhanced geothermal systems (EGS) and closed-loop geothermal (CLG), cost declines, policy support, and emerging opportunities driven by demand for reliable, 24/7 clean energy. Geothermal Power Generation: Steady Growth and Momentum U.S. geothermal power has seen consistent expansion, with nameplate installed capacity reaching 3,96...

FINANCING STRATEGIES FOR GEOTHERMAL PROJECTS LEVERAGING TAX CREDIT INCENTIVES

FINANCING STRATEGIES FOR GEOTHERMAL PROJECTS LEVERAGING TAX CREDIT INCENTIVES Aligning Policy, Risk Mitigation, and Investor Capital to Unlock Geothermal Growth Geothermal energy stands at a unique crossroads in the global energy transition. It is one of the few renewable resources capable of delivering continuous, baseload power and heat, independent of weather conditions. Unlike solar and wind, geothermal offers grid stability, industrial heat, and long-term energy security. Yet despite its immense potential, geothermal deployment has historically lagged behind other renewables due to high upfront capital costs, geological uncertainty, and complex financing requirements. In recent years, governments and financial institutions have increasingly turned to **tax credit incentives as a strategic lever to overcome these barriers. By reducing capital expenditure, improving cash flow profiles, and attracting institutional investors, tax credits are reshaping how geothermal projects are fina...

Switch's Bold Move: 13MW Geothermal PPA with Ormat in Nevada – Game-Changer

Switch's Bold Move: Signing a 13MW Geothermal PPA with Ormat Technologies in Nevada – A Game-Changer for Sustainable Data Centers Image: Ormat Power Plant Posted by Alphaxioms Geothermal News on January 12, 2026 Welcome back to Alphaxioms Geothermal News, your go-to source for all things geothermal energy, innovation, and sustainability. As we kick off 2026, the intersection of renewable energy and high-tech industries is heating up—literally. Today, we're diving deep into a groundbreaking announcement that's set to reshape how data centers power their operations. Global data center operator Switch has inked a 20-year Power Purchase Agreement (PPA) with Ormat Technologies for 13MW of geothermal power from the Salt Wells geothermal power plant in Nevada. This isn't just another deal; it's a pivotal step toward carbon-free, reliable energy for the AI-driven future. In this comprehensive blog post, we'll unpack the details of this agreement, explore the technolog...

13 States Launch Initiative to Accelerate Geothermal Power Development

NASEO Launches Multistate Geothermal Power Accelerator: A Major Step Toward Clean, Reliable Energy By:  Robert Buluma In a significant boost for America's clean energy future, the National Association of State Energy Officials (NASEO) announced on December 18, 2025, the launch of the NASEO Geothermal Power Accelerator. This collaborative initiative brings together 13 states to fast-track the development of geothermal power in partnership with the private sector. Funded by the U.S. Department of Energy’s Geothermal Technologies Office and NASEO itself, the Accelerator aims to unlock the vast potential of geothermal energy a reliable, firm, and flexible source of clean power available around the clock. The participating states are Arizona, California, Colorado, Hawaii, Idaho, Louisiana, Montana, Nevada, New Mexico, Oregon, Pennsylvania, Utah, and West Virginia. These diverse regions, spanning traditional geothermal hotspots in the West to emerging opportunities in the East, will wo...

Banda Baru Geothermal Tender Flops: Zero Bidders Step Forward

Banda Baru Geothermal Survey Tender Fails to Attract Bidders By:  Robert Buluma Indonesia's push toward renewable energy suffered a notable setback in late 2025 when the tender for the Preliminary Survey and Exploration Assignment (WPSPE) of the Banda Baru Sepa geothermal block closed without a single bidder. Located on the remote Seram Island in Maluku Province, this 1,989-hectare site was seen as a promising addition to the nation's geothermal portfolio, with estimated potential of around 25-30 MW. The tender, open from October 31 to December 1, 2025, aimed to assign a developer for initial surveys and exploration, but the lack of interest underscores deep-rooted challenges in attracting investment to Indonesia's geothermal sector. Seram Island, a rugged and largely undeveloped landmass north of Ambon, is characterized by dense rainforests, towering mountains, and limited infrastructure. The Banda Baru block's location amplifies logistical difficulties, making it a to...

Versailles Powers Its Historic Legacy with Deep Geothermal Energy: A Model for Sustainable Urban Heating

Versailles Embraces Deep Geothermal Energy to Decarbonize Its District Heating Network By Robert Buluma The historic city of Versailles in France's Yvelines department is taking a bold step toward sustainability. On December 18, 2025, Mayor François de Mazières and Franck Lacroix, Deputy Managing Director of Engie , signed a 32-year concession agreement. This partnership entrusts Engie with transforming, modernizing, and greening the city's district heating network, aiming to slash carbon emissions while providing reliable, renewable heat to residents. At the project's core is deep geothermal energy, harnessing the natural heat from underground aquifers. The site targets the Dogger aquifer, a limestone formation from the Middle Jurassic period, located about 1,500 meters below the Paris Basin. Water in this layer reaches temperatures of around 60°C, making it ideal for heating. The plan involves drilling a geothermal doublet two wells: one to extract hot water and another t...

GEOLOG Acquires Quad Ltd and QO Inc. to Revamp Wellsite Geology and Pore Pressure Outreach

Revolutionizing the Depths: How GEOLOG's Strategic Acquisition is Supercharging Geothermal Energy's Future By: Robert Buluma Imagine plunging miles beneath the Earth's surface, tapping into an ancient furnace of heat that never sleeps, never falters, and never runs out. This is geothermal energy—the planet's own endless battery, capable of powering civilizations with clean, reliable electricity around the clock. While solar panels go dark at night and wind turbines stand idle in calm air, geothermal delivers baseload power with capacity factors often above 90%. In a world racing toward net-zero emissions and facing exploding energy demands from data centers, electric vehicles, and industrial growth, geothermal is emerging as the sleeping giant ready to awaken. Scaling geothermal globally, however, is no simple task. Drilling deep into the crust exposes crews to extreme conditions: temperatures soaring past 300°C, highly corrosive fluids, and rock so hard it can destroy...

Amsterdam Strikes Geothermal Gold: Hot, Thick, Permeable Reservoir Confirmed

Breakthrough Beneath the Beach: Amsterdam Region Hits Geothermal Paydirt at Strandeiland By: Robert Buluma The Netherlands just took a giant leap toward fossil-free heating. On the artificial island of Strandeiland (part of Amsterdam’s fast-growing IJburg district), the SCAN exploration well has officially confirmed what the geothermal community has been hoping for: a thick, hot, and , most importantly permeable reservoir in the Slochteren Formation. Key numbers that matter:   Reservoir thickness: 152 meters   Bottom-hole temperature: 66 °C   Permeability: confirmed via successful production and injection tests   That’s not screaming-hot by Icelandic standards, but for direct-use district heating in one of Europe’s densest urban areas, 66 °C is more than enough to supply thousands of homes with clean, baseload heat – forever. Why This Well Changes Everything for the Netherlands The Dutch government launched the SCAN program (Seismic Campaign Nethe...