Skip to main content

Japan Adopts Plan to Utilize Nuclear Power to the Fullest

Japan has taken a bold step forward in the fight against climate change by adopting a plan to maximize the use of nuclear power while ensuring a stable electricity supply. This decision comes amid an energy crisis triggered by Russia's invasion of Ukraine, signaling a significant shift from Japan's previous policy of reducing reliance on nuclear energy after the Fukushima disaster. 

The Yomiuri Shimbun / file photo
The Mihama nuclear power plant is seen in Fukui Prefecture on Oct. 26, 2022.

The plan involves building next-generation nuclear reactors to replace decommissioned ones and lifting the freeze on projects to expand, add, or replace reactors. The government will also allow power companies to operate reactors beyond the previously imposed 60-year limit. 

The green transformation plan has a target of attracting over ¥150 trillion in public and private investments for decarbonization over the next decade. 

This ambitious plan includes the issuance of green transformation transition bonds, which will be redeemed using funds obtained through a carbon-pricing system. Japan is leading the way in the transition to a sustainable future, and with measures like these, it is showing that it is committed to creating a carbon-free society.

This green transformation plan is a bold and ambitious step by the Japanese government to combat the effects of climate change and ensure a sustainable future for the country. With the adoption of this plan, Japan aims to transition towards a carbon-free society while also ensuring a stable supply of electricity in the midst of an energy crisis caused by Russia's invasion of Ukraine.


The government's decision to make maximum use of nuclear power, including building next-generation nuclear reactors to replace decommissioned ones, marks a significant departure from its previous policy of reducing dependence on nuclear energy after the 2011 Fukushima nuclear disaster.


Moreover, Japan's decision to change the rule that limits the operating life of reactors to 40 years and allow power companies to operate them beyond the 60-year limit is a clear indication of its commitment to achieving a carbon-free society.

The green transformation plan also sets a target of achieving over ¥150 trillion in public and private investments for decarbonization over the next ten years. To achieve this goal, the government plans to issue green transformation transition bonds, which will be redeemed through an envisioned carbon-pricing system that collects fees from companies for carbon dioxide emissions.

Furthermore, Japan plans to collect fees from fossil fuel importers based on the amounts of CO2 emissions resulting from fuel use, starting in fiscal 2028. Power companies will also be required to buy emissions credits through emissions trading from fiscal 2033.

Although many of the 3,303 public comments received during the solicitation period were critical of the nuclear policy shift, the government adopted the plan with almost no changes. Industry Minister Yasutoshi Nishimura emphasized that the approval came after over 100 council meetings and discussions in the ruling parties.

The government plans to explain the green transformation plan through various means to deepen public understanding. The adoption of this plan represents Japan's commitment to reducing carbon emissions, mitigating climate change, and achieving a sustainable future.


source:(TheJapanNews)

"Upgrade Your Skills with the Future of Energy: 

Enroll Now in Our Online Short Course on Next-Generation Nuclear Technology 

 & Renewable Energy Technology"

March Intake ongoing Register here
Email:info@alphaxioms.com
Tel: +254798197599
website: Alphaxioms.com
Twitter:  Alphaxioms
LinkedIn: alphaxioms


Comments

Post a Comment

Popular Posts

Amsterdam Strikes Geothermal Gold: Hot, Thick, Permeable Reservoir Confirmed

Breakthrough Beneath the Beach: Amsterdam Region Hits Geothermal Paydirt at Strandeiland By: Robert Buluma The Netherlands just took a giant leap toward fossil-free heating. On the artificial island of Strandeiland (part of Amsterdam’s fast-growing IJburg district), the SCAN exploration well has officially confirmed what the geothermal community has been hoping for: a thick, hot, and , most importantly permeable reservoir in the Slochteren Formation. Key numbers that matter:   Reservoir thickness: 152 meters   Bottom-hole temperature: 66 °C   Permeability: confirmed via successful production and injection tests   That’s not screaming-hot by Icelandic standards, but for direct-use district heating in one of Europe’s densest urban areas, 66 °C is more than enough to supply thousands of homes with clean, baseload heat – forever. Why This Well Changes Everything for the Netherlands The Dutch government launched the SCAN program (Seismic Campaign Nethe...

Zanskar’s Big Blind: First Blind Geothermal Discovery in 30 Years

Big Blind: The Geothermal Discovery That Changes Everything By: Robert Buluma Utah startup  Zanskar Geothermal quietly dropped one of the most important announcements in American energy in decades. They discovered and confirmed “Big Blind” ,the first completely blind, commercial-grade geothermal system found in the United States in over thirty years. Let that sink in. No hot springs.   No fumaroles.   No steaming ground.   No prior wells.   Zero surface expression whatsoever. Just desert, sagebrush, and – 7,000 feet below,  a reservoir hot enough and permeable enough to support gigawatt-scale power production. This isn’t incremental progress. This is a paradigm breaker. Why “Blind” Discoveries Matter So Much For the last 40 years, geothermal development in the U.S. has been geographically handcuffed. You could only build plants where nature advertised the resource on the surface – think Yellowstone, The Geysers, or Imperial Valley. Ever...

Exclusive Interview: An In-Depth Look at Exergy’s Game-Changing Gemini Turbine

Exclusive interview with Exergy : discover the new Gemini dual-flow radial outflow turbine, the first single-unit ORC solution for 30–60 MW geothermal projects, offering up to 30 % lower costs and 99 % availability. By:  Robert Buluma .   An interview with  Luca Pozzoni -  Deputy CEO | Group CFO - Exergy International and the Exergy Team 1. Can you walk us through the key design innovations in your new Gemini turbine and how it differs from previous models? The major innovation of the Gemini turbine lies in the dual-flow configuration: unlike conventional radial outflow turbines which are equipped with a single bladed overhung rotor disk, the Gemini features a double-side bladed rotor disk mounted in a between-bearing configuration. This enables the efficient processing of significantly larger volumes of fluid, leading to higher power output having basically two radial outflow turbines in a single machine with enhanced operational stability and simplified mainte...

Eavor’s Geretsried Closed-Loop Geothermal Plant Now Powers the Grid

Eavor Technologies Achieves Historic Milestone: World’s First Commercial-Scale Closed-Loop Geothermal System Now Delivering Power in Geretsried, Germany Published: December 2025 By:  Robert Buluma The Day Geothermal Changed Forever On a crisp Bavarian morning in late 2025, a quiet revolution in clean energy officially went live.   Eavor Technologies Inc ., the Calgary-based pioneer of closed-loop geothermal technology, announced that its flagship commercial project in Geretsried, Germany has begun delivering power to the grid becoming the world’s first utility-scale multilateral closed-loop geothermal system to achieve commercial operation. For anyone who has followed the geothermal sector for the last decade, this is nothing short of seismic (pun intended). What Makes Eavor’s Closed-Loop System Truly Disruptive? Traditional geothermal plants rely on naturally occurring hot water reservoirs or enhanced geothermal systems (EGS) that require hydraulic fracturing and massiv...

Potsdam Goes Deep: How an All-Electric Drilling Rig Is Turning the City’s Heating Completely Fossil-Free

Revolutionizing Urban Heating: UGS GmbH's Pioneering Geothermal Project in Potsdam By: Robert Buluma In the heart of Germany’s energy transition, a quiet but powerful revolution is taking place in Potsdam. UGS GmbH, a German subsidiary of the French energy storage specialist Geostock, has begun a landmark geothermal project that could redefine how entire cities stay warm in winter ,without burning a single drop of oil or cubic meter of gas. The project, awarded by the local utility Energie und Wasser Potsdam GmbH (EWP), focuses on the former site of the HKW Süd combined heat and power plant in southern Potsdam. The goal is ambitious: replace the aging gas-fired plant with deep geothermal energy and other renewables, eventually supplying tens of thousands of households with completely CO₂-free district heating. At the center of this transformation stands a piece of machinery that looks like something from the future: UGS’s fully modernized, all-electric drilling rig “Rig 110”. After...

Chevron’s Big Pivot: Betting Billions on Geothermal and Biofuels

Chevron CEO Sees Growing Potential in Biofuels and Geothermal Energy Posted by  Robert Buluma | December 11, 2025 The energy world is changing fast, and Chevron, one of the oldest and largest oil companies on the planet, is not sitting on the sidelines. In a recent wide-ranging interview with The Wall Street Journal, Chevron CEO Mike Wirth made it clear: the company sees major, long-term growth in two areas that have nothing to do with crude oil,biofuels and geothermal energy. For a company built on drilling for hydrocarbons, this pivot toward heat from the Earth’s core and fuels grown from plants is nothing short of remarkable. From Black Gold to Green Heat: Why Chevron Is Betting Big on Geothermal Geothermal energy has long been the quiet, reliable cousin in the renewable family,always there, rarely flashy, but suddenly very attractive. Unlike solar panels that go dark at night or wind turbines that stop when the air is still, geothermal plants deliver steady, 24/7 baseload p...

Cornell PhD: Earth & Atmospheric Sciences – Fall 2026 Opportunities

Exciting PhD Opportunities in Earth and Atmospheric Sciences at Cornell University (Fall 2026 Admission) By: Robert Buluma If you’re a prospective graduate student interested in cutting-edge research in climate science, glaciology, physical oceanography, geospace physics, volcanology, or cryosphere processes, Cornell University’s Department of Earth and Atmospheric Sciences (EAS) just announced a fantastic set of fully funded PhD positions starting in Fall 2026. The department posted a detailed call on LinkedIn (shared widely on X/Twitter by Prof. Matt Pritchard) listing specific projects and the faculty members actively recruiting students right now. These are not generic openings; each professor has described their project and what kind of student they are looking for. Here are the current opportunities (as of early December 2025): 1. Climate Dynamics   Professor: Flavio Lehner (flavio.lehner@cornell.edu)   Focus: Climate variability with emphasis on how sea-surfa...

🔥 Krafla Magma Testbed: Drilling Into the Earth’s Fiery Heart

Krafla Magma Testbed (KMT) : Humanity’s Bold Leap Into the Heart of the Earth Interview  from Bjorn Gudmundsson the C.E.O-Krafla Magma Testbed and Team By:  Robert Buluma In 2009, deep beneath Iceland’s iconic Krafla volcano, a drilling team made history. During the IDDP-1 project, their drill bit pierced into magma molten rock at just two kilometers below the surface. What began as an accident became a scientific revelation. For the first time, humans had safely accessed magma. This “Eureka” moment gave birth to an idea so daring it almost sounds like science fiction: the creation of a permanent observatory where magma could be directly studied. That idea became the  Krafla Magma Testbed (KMT) a visionary international project that promises to rewrite the future of geothermal science, volcanic monitoring, and sustainable energy. Why Krafla? The Perfect Laboratory Beneath Our Feet Krafla’s  geology is unique. It offers a known shallow magma body, decades of research...

TOPP2 Synchronised: Eastland Generation, Ngāti Tūwharetoa Geothermal Assets & Ormat Success

Milestone Achieved: New Zealand’s Newest Geothermal Power Station TOPP2 Successfully Synchronised to the National Grid By:  Robert Buluma On 3 December 2025, a significant new chapter in Aotearoa New Zealand’s renewable energy story began when the 49 MW Te Onetapu Power Plant 2 (TOPP2) , the country’s newest geothermal station , was successfully synchronised to the national grid for the first time. Located in the Kawerau geothermal field, TOPP2 is the result of a unique and groundbreaking partnership between Eastland Generation (a subsidiary of Eastland Group) and Ngāti Tūwharetoa Geothermal Assets Ltd, the commercial arm of the Ngāti Tūwharetoa Settlement Trust. A True Partnership Success Story This is not just another power station. TOPP2 represents one of the most successful examples of post-Treaty settlement iwi ownership and operation in the energy sector. Ngāti Tūwharetoa Geothermal Assets supplies the geothermal steam and heat under a long-term agreement, while Eastland Gene...

Fervo Energy Secures $462 Million to Supercharge Geothermal Innovation

Fervo Energy's $462 Million Geothermal Gold Rush: Google Joins the Heat By:  Robert Buluma December 10, 2025 In the fast-evolving world of clean energy, where solar panels dominate skylines and wind farms stretch across horizons, a deeper and quieter revolution is rising from beneath our feet. Fervo Energy, the Houston-based innovator in enhanced geothermal systems (EGS), has just announced an astonishing $462 million Series E funding round. This isn’t just another climate-tech investment,it's a tectonic moment for geothermal energy. The round was led by   B Capital , joined by major players including Google , Tesla co-founder JB Straubel, and nuclear industry leader Kris Singh. With continued backing from Breakthrough Energy Ventures and Devon Energy, Fervo’s total funding now exceeds $1.5 billion. Why the sudden rush? As AI-driven data centers consume unprecedented amounts of electricity and political winds shift around renewable priorities, geothermal’s promise of 2...