Skip to main content

"Fervo Energy's innovative geothermal technology could act as a flexible and long-lasting battery, revolutionizing clean energy production"

Fervo Energy, a geothermal power start-up based in Houston, is testing a new spin on traditional geothermal plants. The start-up's experiments suggest that it can create flexible geothermal power plants, which are capable of producing electricity that can be ramped up or down as required. 

Fervo’s enhanced geothermal demonstration site in northern NevadaALASTAIR WIPER/COURTESY OF FERVO ENERGY

Additionally, the system can store up energy for hours or days, essentially acting as a giant and long-lasting battery. This means that the plants could shut down production when solar and wind farms are generating power and provide a rich stream of clean electricity when those sources flag. Fervo's approach could potentially fill a critical gap in modern power grids, making it cheaper and easier to eliminate greenhouse-gas emissions from electricity systems.

The results from the initial experiments—which MIT Technology Review is reporting exclusively—suggest Fervo can create flexible geothermal power plants, capable of ramping electricity output up or down as needed. Potentially more important, the system can store up energy for hours or even days and deliver it back over similar periods, effectively acting as a giant and very long-lasting battery. That means the plants could shut down production when solar and wind farms are cranking, and provide a rich stream of clean electricity when those sources flag.


There are remaining questions about how well, affordably, and safely this will work on larger scales. But if Fervo can build commercial plants with this added functionality, it will fill a critical gap in today’s grids, making it cheaper and easier to eliminate greenhouse-gas emissions from electricity systems.


“We know that just generating and selling traditional geothermal is incredibly valuable to the grid,” says Tim Latimer, chief executive and cofounder of Fervo. “But as time goes on, our ability to be responsive, and ramp up and down and do energy storage, is going to increase in value even more.” 


‘Geothermal highway’

In early February, Latimer drove a Fervo colleague and me from the Reno airport to the company site.


“Welcome to Geothermal Highway,” he said from behind the wheel of a company pickup, as we passed the first of several geothermal plants along Interstate 80. 


The highway cuts through a flat desert in the midst of Nevada’s Basin and Range, the series of parallel valleys and mountain ranges formed by separating tectonic plates.


The crust stretched, thinned, and broke into blocks that tilted, forming mountains on the high side while filling in and flattening the basins with sediments and water, as John McPhee memorably described it in his 1981 book, Basin and Range. From a geothermal perspective, what matters is that all this stretching and tilting brought hot rocks relatively close to the surface.


There’s much to love about geothermal energy: it offers a virtually limitless, always-on source of emissions-free heat and electricity. If the US could capture just 2% of the thermal energy available two to six miles beneath its surface, it could produce more than 2,000 times the nation’s total annual energy consumption.


But because of geological constraints, high capital costs and other challenges, we barely use it at all: today it accounts for 0.4% of US electricity generation. 


To date, developers of geothermal power plants have largely been able to tap only the most promising and economical locations, like this stretch of Nevada. They’ve needed to be able to drill down to porous, permeable, hot rock at relatively low depths. The permeability of the rock is essential for enabling water to move between two human-drilled wells in such a system, but it’s also the feature that’s often missing in otherwise favorable areas. 


Starting in the early 1970s, researchers at Los Alamos National Laboratory began to demonstrate that we could engineer our way around that limitation. They found that by using hydraulic fracturing techniques similar to those now employed in the oil and gas industry, they could create or widen cracks within relatively solid and very hot rock. Then they could add in water, essentially engineering radiators deep underground.


Such an “enhanced” geothermal system then basically works like any other, but it opens the possibility of building power plants in places where the rock isn’t already permeable enough to allow hot water to circulate easily. Researchers in the field have argued for decades that if we drive down the cost of such techniques, it will unlock vast new stretches of the planet for geothermal development. 


A noted MIT study in 2006 estimated that with a $1 billion investment over 15 years, enhanced geothermal plants could produce 100 gigawatts of new capacity on the grid by 2050, putting it into the same league as more popular renewable sources. (By comparison, about 135 gigawatts of solar capacity and 140 gigawatts of wind have been installed across the US.)


“If we can figure out how to extract the heat from the earth in places where there’s no natural circulating geothermal system already, then we have access to a really enormous resource,” says Susan Petty, a contributor to that report and founder of Seattle-based AltaRock Energy, an early enhanced-geothermal startup. 


The US didn’t make that full investment over the time period called for in the report. But it has been making enhanced geothermal a growing priority in recent years.


The first major federal efforts began around 2015, when the Department of Energy announced plans for the Frontier Observatory for Research in Geothermal Energy laboratory. Drilling at the selected Utah FORGE site, near Milford, finally commenced in 2016. The research lab has received some $220 million in federal funds to date. More recently, the DOE has announced plans to invest tens of millions of dollars more in the field through its Enhanced Geothermal Shot initiative.


But there are still only a handful of enhanced geothermal systems operating commercially in the US today.


Fervo’s bet

Latimer read that MIT paper while working in Texas as a drilling engineer for BHP, a metal, oil, and gas mining company, at a point when he was becoming increasingly concerned about climate change. From his own work, he was convinced that the natural-gas fracking industry had already solved some of the technical and economic challenges highlighted in the report.


Latimer eventually quit his job and went to Stanford Business School, with the goal of creating a geothermal startup. He soon met Jack Norbeck, who was finishing his doctoral dissertation there. It included a chapter focused on applied modeling of the Los Alamos findings.


The pair cofounded Fervo in 2017. The company has since raised nearly $180 million in venture capital from Bill Gates’s Breakthrough Energy Ventures, DCVC, Capricorn Investment Group, and others. It’s also announced several commercial power purchase agreements for future enhanced-geothermal projects, including a five-megawatt plant at the Nevada site that will help power Google’s operations in the state.


Under those deals, Fervo is contracted to provide a steady flow of carbon-free electricity, not the flexible features it’s exploring. But almost from the start, utilities and other potential customers told the company that they needed to line up clean sources that could ramp generation up and down, to comply with increasingly strict climate regulations and balance out the rising share of variable wind and solar output on the grid.


“If we can come up with a way to solve this,” Norbeck says he and Latimer realized, “we might really have a way to change the world.”  


Fervo began to explore whether they could do so by taking advantage of another feature of enhanced geothermal systems, which the Los Alamos researchers had also highlighted in later experiments. 


Creating fractures in rocks with low permeability means that the water in the system can’t easily leak out into other areas. Consequently, if you close off the well system and keep pumping in water, you can build up mechanical pressure within the system, as the fractured rock sections push against the earth. 


“The fractures are able to dilate and change shape, almost like balloons,” Norbeck says.


That pressure can then be put to use. In a series of modeling experiments, Fervo found that once the valve was opened again, those balloons effectively deflated, the flow of water increased, and electricity generation surged. If they “charged it” for days, by adding water but not letting it out, it could then generate electricity for days. 


But the company still needed to see if it could work in the real world. 


The tests

After crossing in Humboldt County, Nevada, Latimer eventually steered onto a dirt road. The Fervo site announced itself with a white drilling rig in the distance, soaring 150 feet above a stretch of brown desert. The geology under this particular stretch of land includes hot rocks at shallow depths, but not the permeability needed for traditional plants.


In 2022, the company drilled twin boreholes there, using a nearly 10-inch fixed-cutter drill bit to slowly grind through mixed metasedimentary and granite formations. The wells gradually bend beneath the earth, ultimately plunging some 8,000 feet deep and running around 4,000 feet horizontally.


Fervo then injected cold water under high pressure to create hundreds of vertical fractures between them, effectively forming a giant underground radiator amid rock that reaches nearly 380 ˚F (193 ˚C)

source :(MIT Technologyreview)

Comments

Popular Posts

Eavor’s Geretsried Closed-Loop Geothermal Plant Now Powers the Grid

Eavor Technologies Achieves Historic Milestone: World’s First Commercial-Scale Closed-Loop Geothermal System Now Delivering Power in Geretsried, Germany Published: December 2025 By:  Robert Buluma The Day Geothermal Changed Forever On a crisp Bavarian morning in late 2025, a quiet revolution in clean energy officially went live.   Eavor Technologies Inc ., the Calgary-based pioneer of closed-loop geothermal technology, announced that its flagship commercial project in Geretsried, Germany has begun delivering power to the grid becoming the world’s first utility-scale multilateral closed-loop geothermal system to achieve commercial operation. For anyone who has followed the geothermal sector for the last decade, this is nothing short of seismic (pun intended). What Makes Eavor’s Closed-Loop System Truly Disruptive? Traditional geothermal plants rely on naturally occurring hot water reservoirs or enhanced geothermal systems (EGS) that require hydraulic fracturing and massiv...

Meta and XGS Energy Partner on 150 MW Geothermal Power Project in New Mexico

Meta and XGS Energy Partner on 150 MW Geothermal Power Project in New Mexico A Game-Changer for AI, Clean Energy, and the Future By Robert Buluma – Alphaxioms Energy Blog In a bold move that signals the future of energy and technology convergence, XGS Energy and Meta Platforms, Inc. have announced a groundbreaking agreement to develop 150 megawatts (MW) of next-generation geothermal energy in New Mexico. This partnership not only promises to reshape the state's energy landscape but also underscores the growing demand for sustainable, round-the-clock power to fuel the age of artificial intelligence (AI) and data-driven economies. Clean Power Without Water – XGS’s Unique Edge At the heart of this partnership lies XGS Energy’s proprietary solid-state geothermal technology. Unlike traditional geothermal systems that rely heavily on water and specific geological conditions, XGS’s innovation enables electricity production from hot, dry rock  with zero operating water use. This water-inde...

Exergy ORC Sets New World Record: 46 MW of Geothermal Power in Turkey Delivered in Under 13 Months

Exergy ORC Delivers Two Geothermal Power Plants in Turkey in Record Time: 46 MW Added in Under 13 Months By:  Robert Buluma On November 30, 2025, Exergy International proudly announced the successful commissioning of two new geothermal power plants in Aydın, Turkey: Maren Nezihe Beren 2 (13 MWe) and Emir (33 MWe), totaling 46 MW of new clean electricity capacity. What makes this milestone truly remarkable is the execution speed , both plants were delivered in less than 13 months from contract signing to full commercial operation, setting a new benchmark in the geothermal ORC (Organic Rankine Cycle) industry. Why This Achievement Matters in 2025 In an era where renewable energy projects often face delays of 24–36 months (or longer), completing two binary-cycle geothermal plants totaling 46 MW in under 13 months is nothing short of extraordinary. Turkey already ranks 4th globally in installed geothermal capacity (~1.7 GW as of 2024), and these new plants reinforce the country’s lead...

China Just Built the World’s Cleanest Large-Scale Geothermal Heating System – And Barely Anyone Noticed

China Just Quietly Built One of the Greenest Heating Systems on Earth – And Hardly Anyone Noticed By:  Robert Buluma In a quiet corner of Shaanxi Province, something remarkable just happened. On an ordinary day in late 2025, nine deep geothermal wells in Qishan County, Baoji City, began pumping clean heat from 2,800 meters beneath the Earth’s surface into thousands of homes. No smoke. No coal. No water extracted from the ground and no wastewater discharged back into it. This is China’s first large-scale mid-deep geothermal closed-loop district heating project, and it might be one of the most under-reported green energy milestones of the decade. The Numbers Are Staggering 9 geothermal wells (drilled to 2,800–3,000 m)   100% closed-loop heat exchange – zero fluid leaves or enters the rock formation   Supplies central heating to the entire southern district of Qishan County   Annual savings: 12,000 tons of standard coal   Annual CO₂ reduction: 3...

Iceland Ignites a Geothermal Revolution: ISK 600 Million Bet on Low-Temperature Innovation

Iceland's Geothermal Renaissance: Government Bets Big on Low-Enthalpy and Innovative Uses By: Robert Buluma Iceland has long been the poster child for geothermal energy. With legendary high-temperature fields powering everything from the famous Blue Lagoon to nearly 100% of the country’s electricity and district heating, most people assumed the geothermal story was already written. Apparently not. In a move that has the global geothermal community buzzing, the Icelandic government has just announced a massive ISK 600 million (roughly €4 million / $4.4 million USD) grant program specifically designed to kick-start innovative geothermal projects, with the state covering up to one-third of total project costs. What makes this announcement truly exciting isn’t the money itself (Iceland has funded geothermal before), but the deliberate shift in focus: low-enthalpy resources and non-traditional applications. Why This Matters  The Low-Enthalpy Revolution For decades, Iceland’s geothermal ...

Marriott Drilling to Support Tenerife’s First Deep Geothermal Wells with SGI Collaboration

Marriott Drilling to Support Tenerife’s First Deep Geothermal Wells with SGI Collaboration By: Robert Buluma Marriott Drilling Group has been awarded a borehole rig services contract by Soluciones Geotérmicas Integradas (SGI) to deliver Tenerife’s first deep geothermal wells. This landmark project marks a significant step toward unlocking the Canary Islands’ untapped renewable energy potential. SGI, headquartered in Madrid, Spain, and a wholly owned subsidiary of TAQA (Industrialization & Energy Services Company) , is leading Tenerife’s first deep geothermal exploration campaign. Marriott Drilling has been commissioned as the sole drilling contractor to provide high-performance geothermal borehole services, supporting the island’s transition to cleaner energy. The project, set to begin in 2025 , is commissioned by Energía Geotérmica de Canarias (EGC) —a consortium comprising Reykjavik Geothermal , DISA , ITER , and Involcan . The campaign aims to evaluate geothermal electricity...

DeepU Laser Drilling: Pioneering a Cleaner, Cheaper Geothermal Future

DeepU  Laser Drilling Technology Enters Field Testing: A Leap Toward Cleaner, Cheaper Geothermal Energy By :  Robert Buluma October 29, 2025 The quest to make geothermal energy more accessible and sustainable has taken a major step forward. The DeepU project , a European research and innovation initiative, has announced that its cutting-edge laser drilling technology is now ready for field testing , after 44 months of intensive research, laboratory experiments, and simulations. The DeepU system uses a laser beam combined with a supercritical nitrogen stream to drill through rock without physical contact, a breakthrough that promises to reduce costs, enhance efficiency, and minimize the environmental impact of deep drilling operations. Funded by the European Innovation Council (EIC) Pathfinder programme under Horizon Europe, DeepU is coordinated by the University of Padua and RED SRL, in collaboration with Prevent GmbH, Fraunhofer IAPT, Geoserv Ltd, the University of Wroc...

Indonesia’s First 50:50 Geothermal Joint Venture Takes Shape — PT Daya Mas Bumi Sentosa Officially Launched

In a landmark move that signals Indonesia’s deepening commitment to renewable energy, PT DSSR Daya Mas Sakti — part of the Sinar Mas Group  — and PT FirstGen Geothermal Indonesia , a subsidiary of the Energy Development Corporation ( EDC ) , have officially formed a joint venture company named PT Daya Mas Bumi Sentosa . By:  Robert Buluma This follows the signing ceremony held in August, marking the official wrap-up of one of the most anticipated geothermal partnerships in the region. The new company, PT Daya Mas Bumi Sentosa , represents the first-ever 50:50 geothermal partnership of its kind in Indonesia — a perfect balance of local expertise and international technical excellence. A Powerful Collaboration for a Sustainable Future The newly formed entity will spearhead the exploration and development of six geothermal prospects across Indonesia , with a combined development capacity of 440 megawatts (MW) . This strategic partnership aims to accelerate the nation’s shift ...

Ruggero Bertani European Geothermal Innovation Award 2026: Nominations Now Open

Ruggero Bertani European Geothermal Innovation Award 2026 Is Now Open , Submit Your Nomination Today! By: Robert Buluma The geothermal sector has never been more vibrant, more competitive, or more innovative and at the center of this momentum stands one of the most respected honours in the industry: The Ruggero Bertani European Geothermal Innovation Award. The 2026 edition is officially open, inviting innovators, companies, research teams, and technology developers to showcase groundbreaking contributions that are shaping the next frontier of geothermal energy. If you or your organisation have been pushing boundaries, developing solutions that boost performance, reduce emissions, or introduce new possibilities in the geothermal value chain this is your moment. 🌋 Celebrating Excellence, Advancing Innovation Named after Ruggero Bertani, a globally respected geothermal visionary, the award recognises: Originality & innovation Reliability & technological robustness Reduction of e...

Kenya’s Low Electricity Supply Threatens to Derail Data Centre Ambitions

Kenya’s Low Electricity Supply Threatens to Derail Data Centre Ambitions By:  Robert Buluma Earlier on Alphaxioms.blogspot.com, we explored how the EcoCloud Data Centre project represented  Kenya’s bold leap into renewable-powered digital infrastructure — a model for how clean energy can drive sustainable data innovation. However, new developments suggest that this vision may be facing serious challenges. President William Ruto has revealed that Kenya’s ambitious plan to host world-class data centres powered by renewable energy has stalled due to the country’s limited electricity generation capacity. While Kenya has earned global recognition for its geothermal and wind power leadership, the current generation levels remain too low to sustain the heavy energy demands of data infrastructure. Ruto pointed to Ethiopia’s 5,400 MW mega-dam, commissioned last month — two and a half times Kenya’s total installed capacity — as a clear indicator of the widening energy gap Nairobi must ...