Skip to main content

"Fervo Energy's innovative geothermal technology could act as a flexible and long-lasting battery, revolutionizing clean energy production"

Fervo Energy, a geothermal power start-up based in Houston, is testing a new spin on traditional geothermal plants. The start-up's experiments suggest that it can create flexible geothermal power plants, which are capable of producing electricity that can be ramped up or down as required. 

Fervo’s enhanced geothermal demonstration site in northern NevadaALASTAIR WIPER/COURTESY OF FERVO ENERGY

Additionally, the system can store up energy for hours or days, essentially acting as a giant and long-lasting battery. This means that the plants could shut down production when solar and wind farms are generating power and provide a rich stream of clean electricity when those sources flag. Fervo's approach could potentially fill a critical gap in modern power grids, making it cheaper and easier to eliminate greenhouse-gas emissions from electricity systems.

The results from the initial experiments—which MIT Technology Review is reporting exclusively—suggest Fervo can create flexible geothermal power plants, capable of ramping electricity output up or down as needed. Potentially more important, the system can store up energy for hours or even days and deliver it back over similar periods, effectively acting as a giant and very long-lasting battery. That means the plants could shut down production when solar and wind farms are cranking, and provide a rich stream of clean electricity when those sources flag.


There are remaining questions about how well, affordably, and safely this will work on larger scales. But if Fervo can build commercial plants with this added functionality, it will fill a critical gap in today’s grids, making it cheaper and easier to eliminate greenhouse-gas emissions from electricity systems.


“We know that just generating and selling traditional geothermal is incredibly valuable to the grid,” says Tim Latimer, chief executive and cofounder of Fervo. “But as time goes on, our ability to be responsive, and ramp up and down and do energy storage, is going to increase in value even more.” 


‘Geothermal highway’

In early February, Latimer drove a Fervo colleague and me from the Reno airport to the company site.


“Welcome to Geothermal Highway,” he said from behind the wheel of a company pickup, as we passed the first of several geothermal plants along Interstate 80. 


The highway cuts through a flat desert in the midst of Nevada’s Basin and Range, the series of parallel valleys and mountain ranges formed by separating tectonic plates.


The crust stretched, thinned, and broke into blocks that tilted, forming mountains on the high side while filling in and flattening the basins with sediments and water, as John McPhee memorably described it in his 1981 book, Basin and Range. From a geothermal perspective, what matters is that all this stretching and tilting brought hot rocks relatively close to the surface.


There’s much to love about geothermal energy: it offers a virtually limitless, always-on source of emissions-free heat and electricity. If the US could capture just 2% of the thermal energy available two to six miles beneath its surface, it could produce more than 2,000 times the nation’s total annual energy consumption.


But because of geological constraints, high capital costs and other challenges, we barely use it at all: today it accounts for 0.4% of US electricity generation. 


To date, developers of geothermal power plants have largely been able to tap only the most promising and economical locations, like this stretch of Nevada. They’ve needed to be able to drill down to porous, permeable, hot rock at relatively low depths. The permeability of the rock is essential for enabling water to move between two human-drilled wells in such a system, but it’s also the feature that’s often missing in otherwise favorable areas. 


Starting in the early 1970s, researchers at Los Alamos National Laboratory began to demonstrate that we could engineer our way around that limitation. They found that by using hydraulic fracturing techniques similar to those now employed in the oil and gas industry, they could create or widen cracks within relatively solid and very hot rock. Then they could add in water, essentially engineering radiators deep underground.


Such an “enhanced” geothermal system then basically works like any other, but it opens the possibility of building power plants in places where the rock isn’t already permeable enough to allow hot water to circulate easily. Researchers in the field have argued for decades that if we drive down the cost of such techniques, it will unlock vast new stretches of the planet for geothermal development. 


A noted MIT study in 2006 estimated that with a $1 billion investment over 15 years, enhanced geothermal plants could produce 100 gigawatts of new capacity on the grid by 2050, putting it into the same league as more popular renewable sources. (By comparison, about 135 gigawatts of solar capacity and 140 gigawatts of wind have been installed across the US.)


“If we can figure out how to extract the heat from the earth in places where there’s no natural circulating geothermal system already, then we have access to a really enormous resource,” says Susan Petty, a contributor to that report and founder of Seattle-based AltaRock Energy, an early enhanced-geothermal startup. 


The US didn’t make that full investment over the time period called for in the report. But it has been making enhanced geothermal a growing priority in recent years.


The first major federal efforts began around 2015, when the Department of Energy announced plans for the Frontier Observatory for Research in Geothermal Energy laboratory. Drilling at the selected Utah FORGE site, near Milford, finally commenced in 2016. The research lab has received some $220 million in federal funds to date. More recently, the DOE has announced plans to invest tens of millions of dollars more in the field through its Enhanced Geothermal Shot initiative.


But there are still only a handful of enhanced geothermal systems operating commercially in the US today.


Fervo’s bet

Latimer read that MIT paper while working in Texas as a drilling engineer for BHP, a metal, oil, and gas mining company, at a point when he was becoming increasingly concerned about climate change. From his own work, he was convinced that the natural-gas fracking industry had already solved some of the technical and economic challenges highlighted in the report.


Latimer eventually quit his job and went to Stanford Business School, with the goal of creating a geothermal startup. He soon met Jack Norbeck, who was finishing his doctoral dissertation there. It included a chapter focused on applied modeling of the Los Alamos findings.


The pair cofounded Fervo in 2017. The company has since raised nearly $180 million in venture capital from Bill Gates’s Breakthrough Energy Ventures, DCVC, Capricorn Investment Group, and others. It’s also announced several commercial power purchase agreements for future enhanced-geothermal projects, including a five-megawatt plant at the Nevada site that will help power Google’s operations in the state.


Under those deals, Fervo is contracted to provide a steady flow of carbon-free electricity, not the flexible features it’s exploring. But almost from the start, utilities and other potential customers told the company that they needed to line up clean sources that could ramp generation up and down, to comply with increasingly strict climate regulations and balance out the rising share of variable wind and solar output on the grid.


“If we can come up with a way to solve this,” Norbeck says he and Latimer realized, “we might really have a way to change the world.”  


Fervo began to explore whether they could do so by taking advantage of another feature of enhanced geothermal systems, which the Los Alamos researchers had also highlighted in later experiments. 


Creating fractures in rocks with low permeability means that the water in the system can’t easily leak out into other areas. Consequently, if you close off the well system and keep pumping in water, you can build up mechanical pressure within the system, as the fractured rock sections push against the earth. 


“The fractures are able to dilate and change shape, almost like balloons,” Norbeck says.


That pressure can then be put to use. In a series of modeling experiments, Fervo found that once the valve was opened again, those balloons effectively deflated, the flow of water increased, and electricity generation surged. If they “charged it” for days, by adding water but not letting it out, it could then generate electricity for days. 


But the company still needed to see if it could work in the real world. 


The tests

After crossing in Humboldt County, Nevada, Latimer eventually steered onto a dirt road. The Fervo site announced itself with a white drilling rig in the distance, soaring 150 feet above a stretch of brown desert. The geology under this particular stretch of land includes hot rocks at shallow depths, but not the permeability needed for traditional plants.


In 2022, the company drilled twin boreholes there, using a nearly 10-inch fixed-cutter drill bit to slowly grind through mixed metasedimentary and granite formations. The wells gradually bend beneath the earth, ultimately plunging some 8,000 feet deep and running around 4,000 feet horizontally.


Fervo then injected cold water under high pressure to create hundreds of vertical fractures between them, effectively forming a giant underground radiator amid rock that reaches nearly 380 ˚F (193 ˚C)

source :(MIT Technologyreview)

Comments

Popular Posts

Meta and XGS Energy Partner on 150 MW Geothermal Power Project in New Mexico

Meta and XGS Energy Partner on 150 MW Geothermal Power Project in New Mexico A Game-Changer for AI, Clean Energy, and the Future By Robert Buluma – Alphaxioms Energy Blog In a bold move that signals the future of energy and technology convergence, XGS Energy and Meta Platforms, Inc. have announced a groundbreaking agreement to develop 150 megawatts (MW) of next-generation geothermal energy in New Mexico. This partnership not only promises to reshape the state's energy landscape but also underscores the growing demand for sustainable, round-the-clock power to fuel the age of artificial intelligence (AI) and data-driven economies. Clean Power Without Water – XGS’s Unique Edge At the heart of this partnership lies XGS Energy’s proprietary solid-state geothermal technology. Unlike traditional geothermal systems that rely heavily on water and specific geological conditions, XGS’s innovation enables electricity production from hot, dry rock  with zero operating water use. This water-inde...

Arverne’s New Geothermal Drill Could Unlock a Billion-Dollar Lithium Treasure

Arverne Launches First Geothermal Drilling for the Lithium de France Project in Alsace By:  Robert Buluma Published: November 24, 2025 Location: Pau, France In a milestone moment for Europe’s geothermal and critical-minerals sectors, Arverne (ARVEN) — France’s leading geothermal solutions provider — has officially begun drilling the first geothermal doublet for the groundbreaking Lithium de France project in Schwabwiller, Alsace. This launch marks a major step toward establishing Europe’s first integrated geothermal-lithium production ecosystem. A New Chapter for European Geothermal Innovation According to the company, drilling operations have begun precisely on schedule following extensive site preparation. The geothermal doublet, which includes a production well and a reinjection well, will start at 10 meters apart on the surface and expand to nearly 1 kilometer of horizontal separation at a depth of 2,400 meters. This phase is crucial. The initial drilling campaign will verify...

Strataphy Raises $6M to Revolutionize AI and Industrial Cooling with Geothermal Technology

Strataphy Raises $6 Million to Revolutionize AI & Industrial Cooling with Geothermal Innovation November 25, 2025 Author:  Robert Buluma In a major boost for sustainable infrastructure, Strataphy , a cutting-edge deep-tech company, has raised $6 million in seed funding to scale its revolutionary geothermal-based cooling technology across the Middle East and other high-temperature regions. The round was led by Outliers VC and Shorooq Partners , with additional participation from PlusVC . As artificial intelligence, hyperscale data centers, and industrial facilities continue to expand, cooling has become one of the biggest bottlenecks , especially in hot climates. In the Middle East, cooling consumes nearly 50% of total electricity use and constitutes a massive $120 billion market , with Saudi Arabia alone accounting for $13 billion . PrimeLoop™: Cooling Powered by Deep Subsurface Energy At the heart of Strataphy’s breakthrough is PrimeLoop™ , a proprietary subsurface cooling...

Saint-Denis Powers Up with New Geothermal Plant at Fort de l’Est

A New Geothermal Power Plant Inaugurated at Fort de l’Est: Saint-Denis Expands Its Green Energy Network By:  Robert Buluma Saint-Denis has marked another major milestone in its clean energy journey with the inauguration of a brand-new geothermal power plant at Fort de l’Est on November 20, 2025. The facility, operated by Plaine Commune Énergie under the project management of SMIREC (Syndicat mixte des réseaux d'énergie calorifique) , is now set to deliver renewable, reliable, and low-carbon heating to thousands of local residents. The inauguration comes after two years of intensive work, reinforcing Saint-Denis’ position as a leading city in France’s transition toward sustainable energy systems. A Renewable, Local, and Emission-Free Energy Source The new geothermal plant taps directly into the natural heat stored beneath the ground. Using two geothermal wells drilled to a depth of 1,800 meters , the system extracts hot water from underground reservoirs. Instead of consuming th...

The Geothermal Boom Begins: New Investments, Bold Tech, and a 20× Outlook by 2050

Global Geothermal Market Heats Up: New Investment Plans Revealed for 2025 By: Robert Buluma The global geothermal energy sector is entering a transformative phase in 2025, driven by surging investments, accelerating technology adoption, and favorable policy shifts. As clean baseload capacity becomes more critical to the world’s energy transition, stakeholders are increasingly turning to geothermal power—not just for electricity generation, but also for industrial heat, green hydrogen, and direct-use applications. This shift could solidify geothermal as a cornerstone of sustainable energy infrastructure in the decades ahead. 1. A Market Poised for Steady Growth According to industry forecasts, the global geothermal energy market is on track for major expansion.   We  project the sector will grow from USD 56.0 billion in 2025 to USD 85.0 billion by 2035 , a compound annual growth rate (CAGR) of 4.2%. Business Research Insights forecasts a CAGR of 7.3% between 2025 and 20...

Biliran II Geothermal Project: The Philippines’ Next 200 MW Renewable Baseload Power Breakthrough

Biliran II: The Philippines' Next 200 MW Geothermal Powerhouse Poised to Transform Data Centers and Industrial Energy Security By:  Robert Buluma In a world racing toward stable and decarbonized energy systems, geothermal power continues to stand out as one of the most reliable and future-proof renewable energy solutions. The Philippines—already home to the world’s third-largest geothermal capacity—is once again making headlines with a transformative new development: the ~200 MW Biliran II Geothermal Project , now advancing toward its final resource confirmation. This landmark project represents a bold new era of geothermal development in Southeast Asia, tapping into renewable baseload power to supply industries that can no longer afford instability, unpredictable pricing, or carbon-heavy electricity. With the rising energy demands of data centers, manufacturing hubs, and digital infrastructure, Biliran II could become a strategic cornerstone in securing long-term energy resilienc...

OMV GeoTherm NL BV Takes Over Major Parts of Shell’s Dutch Geothermal Portfolio

OMV GeoTherm NL BV Takes Over Major Segments of Shell Geothermie’s Dutch Geothermal Portfolio By:  Robert Buluma In a significant development for the Dutch geothermal sector, a new and highly experienced international player has stepped into the arena. OMV Green Energy GmbH—operating in the Netherlands under the name OMV GeoTherm NL BV —has officially taken over a large portion of Shell Geothermie’s geothermal portfolio . This transition marks an important moment for the growth, diversification, and continued professionalization of geothermal energy development in the Netherlands. With this move, OMV becomes a central actor in several high-potential geothermal projects across Rotterdam, Capelle , and Rijnland , reinforcing its long-term commitment to supporting renewable energy systems across Europe. A New Powerhouse in Dutch Geothermal Development OMV, headquartered in Austria, is internationally recognized for its extensive knowledge of subsurface geology, drilling techno...

Unlocking America’s Hidden Power: Congressman Fulcher’s Bold Push for Geothermal Energy and Lower Energy Costs

Congressman Russ Fulcher Introduces Landmark Bill to Unlock Geothermal Energy and Lower Costs Across the U.S. By:  Robert Buluma WASHINGTON, D.C., November 25, 2025 – U.S. Congressman Russ Fulcher (Idaho-01) has reintroduced a pivotal piece of legislation designed to accelerate geothermal energy development in the United States. The bill, H.R. 5576 – the Enhancing Geothermal Production on Federal Lands Act, aims to streamline the permitting and exploration process for geothermal projects, placing geothermal energy on par with oil and gas exploration on public lands. As energy demand in the United States surges, driven by rapid technological advancements, including artificial intelligence, electric vehicles, and high-capacity data centers, the need for reliable and clean baseload energy has never been more critical. Geothermal energy, a stable and renewable resource, offers a significant solution, yet its development has long been hampered by federal regulations and lengthy permitti...

GeoHardt Unveils Mannheim Site for First Geothermal Heating Plant to Boost Renewable Energy

GeoHardt GmbH announces Mannheim site for its first geothermal heating plant in Rheinau, supporting MVV’s goal of 100% renewable district heating and driving the city’s energy transition. By: Robert Buluma GeoHardt GmbH has officially revealed its first geothermal heating plant site in Mannheim, marking a major milestone for renewable energy in the region. The selected location, in the southeastern part of Mannheim’s Rheinau district, will serve as the foundation for what could become a series of up to three geothermal heating plants planned by the company. This initiative aligns with MVV’s ambitious goal of transitioning district heating to 100% renewable energy, positioning Mannheim as a leader in Germany’s energy transition. Strategic Location: Franzosenhäusel in Mannheim The chosen site, known locally as Franzosenhäusel, is situated between the Bundesstraße B36 and the A6 motorway, south of Hallenbuckel Street. Covering an area of approximately 28,000 square meters, the site will...

Scotland Breaks Ground: NHS Grampian and TownRock Energy Launch First Deep Geothermal Heating Plant

Scotland’s First Deep Geothermal Heating Plant: NHS Grampian and TownRock Energy Explore Renewable Future By:  Robert Buluma Scotland is taking a significant step toward renewable energy with the potential construction of its first deep geothermal heating plant in Aberdeen. A recent Scottish Government-funded feasibility study, conducted by TownRock Energy in partnership with NHS Grampian , has revealed the immense potential of harnessing geothermal energy beneath the city. This groundbreaking initiative could transform heating systems, reduce carbon emissions, and support the local community in tackling rising energy costs. Feasibility Study Highlights Geothermal Potential The desk-based study, completed by TownRock Energy, examined three different geothermal technologies for the Foresterhill Health Campus . The study concluded that an Enhanced Geothermal System (EGS) , reaching depths of 3.5km to 5km, would provide the most efficient and reliable source of renewable heat. ...