Skip to main content

"Rising from the Heat: Europe Embraces the Power of Geothermal Energy"

Forget about relying on finite sources of energy. Europe is turning towards a renewable and unlimited energy source - geothermal. With France, Iceland and Hungary leading the way, several countries are investing billions of euros in this energy source to meet their energy demands.

image source: (unsplash.com,Mark Kuiper)

A Rich European Tradition

Europe has a rich history in geothermal energy, with Iceland, France, and Hungary dominating the sector. However, in recent years, more and more countries have shown an increased interest in exploring the potential of this renewable energy source. Geothermal energy is 100% renewable, unlimited, and reliable - making it a valuable resource in the race towards decarbonization. The ongoing conflict in Ukraine has highlighted the continent's vulnerability in the energy sector and has only reinforced the trend towards investing in geothermal energy.

Decarbonizing 25% of Energy Demand

Geothermal power plants are estimated to provide up to 10% of the electricity demand in Europe. The substitution of fossil fuels with geothermal energy could decarbonize up to 25% of the entire population's energy demand, according to EU data. This means that this renewable energy source is finally getting the attention it deserves and is helping to increase the continent's energy independence and achieve ambitious climate goals.

Driven by GermanyCurrently, Germany is leading the way in the transition to geothermal energy. At the end of 2022, the German government released a plan to increase geothermal production ten-fold, reaching 10 TWh by 2030. Monaco, with its perfect geological location, has planned an investment of one billion euros in geothermal energy by 2035 with the goal of reducing CO2 emissions and gaining energy independence.

France's PlanThe French government has also recently announced a new action plan for the development of geothermal energy. The goal is to produce enough geothermal heat in 15-20 years to save 100 TWh of gas each year and achieve carbon neutrality by 2050. In 2021, geothermal energy represented only 1% of the country's final heat consumption, equivalent to about 6 TWh.

Italy and Other Countries

While Italy is still debating how to support the expansion of geothermal energy, Hungary is already looking to boost production, replacing about 1-1,5 billion cubic meters of natural gas per year. The largest geothermal heating plant in Europe is expected to be completed by 2030 in the city of Aarhus, Denmark. This facility should be able to cover about 30% of the area's energy demand.

Energy transition refers to the shift from traditional, fossil fuel-based energy systems to more sustainable, clean and renewable energy sources. There are several ways to achieve an energy transition, including:

Increased Renewable Energy Generation: One of the most effective ways to achieve energy transition is by increasing the generation of renewable energy sources, such as wind, solar, hydro and geothermal power. This can be done through government policies, subsidies and investment in new technologies.

Energy Efficiency Measures: Improving energy efficiency across all sectors is another key way to achieve energy transition. This can be done through better building insulation, use of efficient appliances, and better urban planning and transportation.

Electrification of Transportation: The transportation sector is a significant contributor to greenhouse gas emissions. The transition to electric vehicles (EVs) and other low-emission modes of transportation, such as public transportation and cycling, can help reduce emissions from the sector.

Decentralized Energy Systems: Decentralized energy systems, such as microgrids, can help communities become more self-sufficient and reduce their reliance on centralized energy systems.

Carbon Capture and Storage (CCS): CCS is a technology that captures carbon dioxide emissions from industrial processes and stores them underground, preventing them from entering the atmosphere. This technology can help mitigate emissions from sectors that are difficult to decarbonize, such as cement and steel production.

Nuclear Energy: While nuclear energy is a controversial energy source, it does have the potential to play a role in achieving energy transition, especially in countries with a large existing nuclear power infrastructure.

It's important to note that an energy transition is a complex and multi-faceted process, and no single solution will work for every country. A successful energy transition will likely require a combination of these strategies, tailored to the specific needs and resources of each country.

Embrace the heat and join Europe's journey towards a sustainable future powered by geothermal energy.

This link below exponds a much fascinative information on geothermal.

https://alphaxioms.blogspot.com/2023/01/exploring-intriguing-connection-between.html

source:(https://www.energiaitalia.news/news/geotermico/leuropa-progetta-di-sostituire-il-gas-naturale-con-lenergia-geotermica/12231/)

#Energytransition #Europe #Geothermal

Comments

Hot Topics 🔥

Amsterdam Strikes Geothermal Gold: Hot, Thick, Permeable Reservoir Confirmed

Breakthrough Beneath the Beach: Amsterdam Region Hits Geothermal Paydirt at Strandeiland By: Robert Buluma The Netherlands just took a giant leap toward fossil-free heating. On the artificial island of Strandeiland (part of Amsterdam’s fast-growing IJburg district), the SCAN exploration well has officially confirmed what the geothermal community has been hoping for: a thick, hot, and , most importantly permeable reservoir in the Slochteren Formation. Key numbers that matter:   Reservoir thickness: 152 meters   Bottom-hole temperature: 66 °C   Permeability: confirmed via successful production and injection tests   That’s not screaming-hot by Icelandic standards, but for direct-use district heating in one of Europe’s densest urban areas, 66 °C is more than enough to supply thousands of homes with clean, baseload heat – forever. Why This Well Changes Everything for the Netherlands The Dutch government launched the SCAN program (Seismic Campaign Nethe...

Vulcan Energy's G-LEP Plant in Landau Paves the Way for Europe's Sustainable Lithium Revolution

Breaking Ground: Vulcan Energy's G-LEP Plant in Landau Paves the Way for Europe's Sustainable Lithium Revolution By: Robert Buluma In the heart of Germany's Rhineland-Palatinate region, a groundbreaking ceremony marked the laying of the foundation stone for the first optimized Geothermal and Lithium Extraction Plant (G-LEP) in Landau, spearheaded by Vulcan Energy Resources, an Australian-German company. As Petra Dick-Walther, State Secretary in the Ministry for Climate Protection, Environment, Energy, and Mobility of Rhineland-Palatinate, described in her recent social media post, this project represents a "quantum leap into the future." It enables the simultaneous extraction of climate-neutral lithium and generation of renewable energy from the hot thermal beds of the Upper Rhine Graben, opening new avenues for Germany's energy transition, supply security, and Europe's sovereignty over critical resources. Lithium, a key component in batteries for electri...

Geo Dipa's Game-Changing Leap: Commercial Silica and Lithium Production from Geothermal Brines by 2028

Geo Dipa's Ambitious Leap: Extracting Silica and Lithium from Geothermal Brines by 2028 Introduction In an era where the global energy transition demands sustainable sources of critical minerals, Indonesia's state-owned PT Geo Dipa Energi ( Persero ) is positioning itself at the forefront of innovation. By 2028, Geo Dipa plans to commence commercial production of silica and lithium extracted from geothermal brines, a byproduct of its geothermal power operations. This initiative not only diversifies the company's revenue streams but also aligns with Indonesia's broader goals of enhancing renewable energy capacity and supporting the electric vehicle (EV) battery supply chain.  Geothermal energy, harnessed from the Earth's heat, produces hot brines rich in dissolved minerals like lithium and silica. Traditionally viewed as waste, these brines are now seen as valuable resources. Geo Dipa's strategy builds on years of feasibility studies and international partnershi...

Zanskar’s Big Blind: First Blind Geothermal Discovery in 30 Years

Big Blind: The Geothermal Discovery That Changes Everything By: Robert Buluma Utah startup  Zanskar Geothermal quietly dropped one of the most important announcements in American energy in decades. They discovered and confirmed “Big Blind” ,the first completely blind, commercial-grade geothermal system found in the United States in over thirty years. Let that sink in. No hot springs.   No fumaroles.   No steaming ground.   No prior wells.   Zero surface expression whatsoever. Just desert, sagebrush, and – 7,000 feet below,  a reservoir hot enough and permeable enough to support gigawatt-scale power production. This isn’t incremental progress. This is a paradigm breaker. Why “Blind” Discoveries Matter So Much For the last 40 years, geothermal development in the U.S. has been geographically handcuffed. You could only build plants where nature advertised the resource on the surface – think Yellowstone, The Geysers, or Imperial Valley. Ever...

FINANCING STRATEGIES FOR GEOTHERMAL PROJECTS LEVERAGING TAX CREDIT INCENTIVES

FINANCING STRATEGIES FOR GEOTHERMAL PROJECTS LEVERAGING TAX CREDIT INCENTIVES Aligning Policy, Risk Mitigation, and Investor Capital to Unlock Geothermal Growth Geothermal energy stands at a unique crossroads in the global energy transition. It is one of the few renewable resources capable of delivering continuous, baseload power and heat, independent of weather conditions. Unlike solar and wind, geothermal offers grid stability, industrial heat, and long-term energy security. Yet despite its immense potential, geothermal deployment has historically lagged behind other renewables due to high upfront capital costs, geological uncertainty, and complex financing requirements. In recent years, governments and financial institutions have increasingly turned to **tax credit incentives as a strategic lever to overcome these barriers. By reducing capital expenditure, improving cash flow profiles, and attracting institutional investors, tax credits are reshaping how geothermal projects are fina...

13 States Launch Initiative to Accelerate Geothermal Power Development

NASEO Launches Multistate Geothermal Power Accelerator: A Major Step Toward Clean, Reliable Energy By:  Robert Buluma In a significant boost for America's clean energy future, the National Association of State Energy Officials (NASEO) announced on December 18, 2025, the launch of the NASEO Geothermal Power Accelerator. This collaborative initiative brings together 13 states to fast-track the development of geothermal power in partnership with the private sector. Funded by the U.S. Department of Energy’s Geothermal Technologies Office and NASEO itself, the Accelerator aims to unlock the vast potential of geothermal energy a reliable, firm, and flexible source of clean power available around the clock. The participating states are Arizona, California, Colorado, Hawaii, Idaho, Louisiana, Montana, Nevada, New Mexico, Oregon, Pennsylvania, Utah, and West Virginia. These diverse regions, spanning traditional geothermal hotspots in the West to emerging opportunities in the East, will wo...

Geothermal-Powered Greenhouses: Qingyun County's Leap Toward Sustainable, Year-Round Agriculture in Shandong

Harnessing Geothermal Energy to Power Modern Agriculture: How Qingyun County Is Redefining Sustainable Food Production in Shandong By:  Robert Bulum a As winter tightens its grip across northern China, most agricultural regions brace for declining productivity, rising energy costs, and increased environmental pressure. Yet in Qingyun County, located in China’s eastern Shandong Province, a different story is unfolding,one where geothermal energy is quietly transforming agriculture into a resilient, low-carbon, high-yield enterprise. At the heart of this transformation lies the Shandong Shuifa Aerospace Modern Agriculture Industrial Park, where geothermal energy has become a critical enabler of year-round food production, economic efficiency, and environmental sustainability. A Warm Oasis in the Depth of Winter Shortly after the Minor Snow solar term, temperatures outside the greenhouses in Qingyun County drop sharply. Inside the intelligent greenhouse complex, however, conditions re...

Germany Unveils Groundbreaking KfW–Munich Re Program to De-Risk Deep Geothermal Heat Projects

Germany Launches Landmark Financing Program to Accelerate Deep Geothermal Heat Projects By: Robert Buluma Germany has taken a decisive step toward securing a climate-neutral heat future. On December 18, 2025, the German Federal Ministry for Economic Affairs and Energy (BMWK), KfW Development Bank , and global reinsurer Munich Re officially launched a groundbreaking funding program designed to unlock large-scale investments in deep geothermal energy for municipal and industrial heat supply. The new initiative, known as the KfW Geothermal Promotional Loan (KfW-Förderkredit Geothermie), directly addresses one of the most persistent bottlenecks in geothermal development: the high financial risk associated with drilling deep geothermal wells. By combining low-interest loans with comprehensive risk coverage, the program is set to significantly accelerate geothermal deployment across Germany. Why Deep Geothermal Matters for Germany’s Heat Transition While Germany has made remarkable progre...

Tender Notice: Integrated Drilling Services for Geothermal Resource Exploration – Saint Lucia

Expression of Interest: Saint Lucia Launches Early Market Engagement for Integrated Drilling Services By:  Robert Buluma The Government of Saint Lucia (GoSL) has officially opened an Expression of Interest (EOI) process as part of its major push into geothermal exploration under the Renewable Energy Sector Development Project (RESDP). Backed by US$34.6 million in financing from the World Bank and several global climate-focused Trust Funds, this initiative marks a pivotal step toward unlocking the island’s geothermal energy potential. The RESDP aims to determine the viability of Saint Lucia’s geothermal resource for electricity generation while strengthening the enabling environment required to scale up private-sector clean energy investments. A key component of this effort involves the exploration drilling of three slim-hole wells in the communities of Saltibus, Belle Plaine, and Fond St. Jacques. Of the total project financing, US$12.3 million is provided by the International Dev...

Powering Sweet Success: Taiwan Fructose's Geothermal Energy Partnership in the Philippines

A Sweet Transition: How Taiwan Fructose is Powering Philippine Manufacturing with Clean Geothermal Energy By:  Robert Buluma In a world increasingly focused on sustainability, some partnerships stand out as truly inspiring. One such collaboration is between Taiwan Fructose Co. Ltd.'s Philippine subsidiary and First Gen Corporation , which has teamed up to supply the company's Batangas production facility with clean geothermal energy. This innovative agreement not only ensures reliable power for manufacturing sweeteners but also marks a significant step toward decarbonizing industrial operations in the Philippines. It's a perfect example of how renewable energy can sweeten the deal for both business and the environment. The partnership was recently announced, allowing Taiwan Fructose (Philippines) — a leading global supplier of high-quality sweeteners — to draw electricity directly from First Gen-EDC's Bacon-Manito (Bac-Man) geothermal complex located in the Bicol regio...