Skip to main content

"Revolutionary New Nuclear Unit Connected to Grid, Promising Cheap and Clean Energy for Slovakia"


The Mochovce nuclear power plant (Image: Slovenské elektrárne)

After years of construction and careful preparation, the new Unit 3 at the Mochovce Nuclear Power Plant in Slovakia has finally come to life! At 10.57pm on January 31, the unit was successfully connected to the grid for the first time, operating at 20% of its full capacity. This momentous event represents a major milestone not just for the company, Slovenské elektrárne, but also for the entire country. The Unit 3 will play a crucial role in supplying cheap electricity to households and contributing to the country's efforts towards reducing greenhouse gas emissions and becoming carbon neutral.

The journey to this point has been a long and meticulous one. Tests were carried out at increasing levels of power, starting at 5% and gradually increasing to 20%. The steam turbines were brought to life for the first time over the weekend, spinning up to the nominal speed of 3000 revolutions per minute. The generator, block transformer, and the 400 kV line were also put through rigorous tests to ensure everything was working smoothly.

The next phase of the launch will involve testing the unit at power levels from 35% to 100%, with the final step being a 144-hour trial run at its full 471 MWe output. The Unit 3 is expected to supply electricity to the grid over the next few weeks, with short-term shutdowns planned according to the commissioning schedule.


With its numerous upgrades to safety and security, including increased aircraft impact protection and emergency management measures based on lessons from the Fukushima accident, Unit 3 is designed to provide 13% of Slovakia's electricity needs when operating at full capacity. The new block has a planned service life of 60 years, and is the result of decades of hard work and dedication by the nuclear energy workers and the company. The future looks bright for Mochovce, and we can't wait to see what other exciting developments are in store!

Nuclear energy is considered a cheap source of energy for several reasons:

Fuel Efficiency: Nuclear reactors use fuel rods made of enriched uranium, which is abundant and widely available. A single fuel rod can generate a large amount of energy, making nuclear power plants highly fuel efficient.

Low Operating Costs: Once a nuclear power plant is built and running, the operating costs are low due to the long lifespan of fuel rods and low maintenance requirements.

Economies of Scale: Nuclear power plants are designed to generate large amounts of energy, so they benefit from economies of scale. The more energy they generate, the lower the cost per kilowatt hour.

Lack of greenhouse gas emissions: Unlike fossil fuels, nuclear energy does not produce greenhouse gas emissions, which contributes to air pollution and global warming. This not only helps to reduce carbon emissions but also helps to mitigate the impacts of climate change.

High Reliability: Nuclear power plants are highly reliable, with an average availability of over 90% compared to other sources of energy


source :(worldnuclearnews)

#Newbuild #Operation_Maintenance #Slovakia

Comments

Popular Posts

Amsterdam Strikes Geothermal Gold: Hot, Thick, Permeable Reservoir Confirmed

Breakthrough Beneath the Beach: Amsterdam Region Hits Geothermal Paydirt at Strandeiland By: Robert Buluma The Netherlands just took a giant leap toward fossil-free heating. On the artificial island of Strandeiland (part of Amsterdam’s fast-growing IJburg district), the SCAN exploration well has officially confirmed what the geothermal community has been hoping for: a thick, hot, and , most importantly permeable reservoir in the Slochteren Formation. Key numbers that matter:   Reservoir thickness: 152 meters   Bottom-hole temperature: 66 °C   Permeability: confirmed via successful production and injection tests   That’s not screaming-hot by Icelandic standards, but for direct-use district heating in one of Europe’s densest urban areas, 66 °C is more than enough to supply thousands of homes with clean, baseload heat – forever. Why This Well Changes Everything for the Netherlands The Dutch government launched the SCAN program (Seismic Campaign Nethe...

Zanskar’s Big Blind: First Blind Geothermal Discovery in 30 Years

Big Blind: The Geothermal Discovery That Changes Everything By: Robert Buluma Utah startup  Zanskar Geothermal quietly dropped one of the most important announcements in American energy in decades. They discovered and confirmed “Big Blind” ,the first completely blind, commercial-grade geothermal system found in the United States in over thirty years. Let that sink in. No hot springs.   No fumaroles.   No steaming ground.   No prior wells.   Zero surface expression whatsoever. Just desert, sagebrush, and – 7,000 feet below,  a reservoir hot enough and permeable enough to support gigawatt-scale power production. This isn’t incremental progress. This is a paradigm breaker. Why “Blind” Discoveries Matter So Much For the last 40 years, geothermal development in the U.S. has been geographically handcuffed. You could only build plants where nature advertised the resource on the surface – think Yellowstone, The Geysers, or Imperial Valley. Ever...

Europe’s Underground Energy Revolution: EGEC Demands 250 GW Geothermal by 2040

Europe’s Geothermal Revolution Is Coming: EGEC Demands a 250 GW Target by 2040 – Here’s Why 2026 Will Be Make-or-Break By: Robert Buluma Published: December 9, 2025   On 5 December 2025, the European Geothermal Energy Council (EGEC) dropped a bombshell policy paper with a crystal-clear message to Brussels: Europe is sleeping on the biggest indigenous, baseload, 24/7 renewable energy source under its feet , and it’s time to wake up. Titled ,The European Geothermal Strategy and Action Plan , Making Europe competitive, secure and affordable, the document is the strongest industry call yet for the European Commission to publish a dedicated European Geothermal Strategy and Action Plan in Q1 2026. And the ambition is massive: 250 GW of installed geothermal capacity by 2040 a six-fold increase from today’s ~44 GW (mostly district heating and a handful of power plants). Why Now? Because Europe Can No Longer Afford to Wait Since Russia’s invasion of Ukraine, Europe has been laser-focu...

Taiwan Drills 4,000m in Yilan, Unlocks Deep Geothermal Power

Breakthrough in Taiwan’s Deep Geothermal Energy: Academia Sinica and CPC Corporation Drill Nearly 4,000 Meters in Yilan and Find High-Potential Reservoir Published: December 10, 2025 By:  Robert Buluma   In a historic milestone for Taiwan’s renewable energy journey, Academia Sinica (Central Research Academy) and Taiwan’s state-owned CPC Corporation have successfully completed the island’s first-ever “deep geothermal exploratory well” in Yuanshan Township, Yilan County. The well reached a depth of nearly 4,000 meters, recorded a bottom-hole temperature close to 150 °C, and confirmed the existence of an upwelling heat source beneath the northern Yilan Plain. Researchers are now calling it a “high-potential geothermal reservoir” that could become a cornerstone of Taiwan’s green energy transition. From Anxiety to Excitement: The Temperature Surprise Dr. Ji-Chen Lee (李建成), principal investigator of the “Taiwan Geothermal Research and Technology Development Project” and researcher a...

Eavor’s Geretsried Closed-Loop Geothermal Plant Now Powers the Grid

Eavor Technologies Achieves Historic Milestone: World’s First Commercial-Scale Closed-Loop Geothermal System Now Delivering Power in Geretsried, Germany Published: December 2025 By:  Robert Buluma The Day Geothermal Changed Forever On a crisp Bavarian morning in late 2025, a quiet revolution in clean energy officially went live.   Eavor Technologies Inc ., the Calgary-based pioneer of closed-loop geothermal technology, announced that its flagship commercial project in Geretsried, Germany has begun delivering power to the grid becoming the world’s first utility-scale multilateral closed-loop geothermal system to achieve commercial operation. For anyone who has followed the geothermal sector for the last decade, this is nothing short of seismic (pun intended). What Makes Eavor’s Closed-Loop System Truly Disruptive? Traditional geothermal plants rely on naturally occurring hot water reservoirs or enhanced geothermal systems (EGS) that require hydraulic fracturing and massiv...

Hawaii’s Underground Secret to Cheaper, Greener Cooling Revealed

Unlocking Hawaii’s Hidden Cooling Power: New Report Reveals Huge Potential for Geothermal Cooling on Oahu (2025) By:  Robert Buluma Could the same volcanic islands that give Hawaii its famous heat also provide the solution to cool its buildings , without crushing the electric grid?   A groundbreaking new report released December 8, 2025, by the University of Hawaiʻi at Mānoa (UHM) and Lawrence Berkeley National Laboratory (LBNL) says the answer is a resounding yes. Shallow geothermal heat exchangers (GHEs) , also known as geothermal heat pumps or ground-source heat pumps ,could dramatically cut cooling costs and electricity demand across Oahu, especially for large buildings like schools, military bases, and university facilities. Here’s everything you need to know about this exciting development in Hawaii geothermal cooling technology. Why Hawaii Is Perfectly Suited for Geothermal Cooling Most of the world uses geothermal heat pumps for heating in cold climates. Hawaii ...

🔥 Krafla Magma Testbed: Drilling Into the Earth’s Fiery Heart

Krafla Magma Testbed (KMT) : Humanity’s Bold Leap Into the Heart of the Earth Interview  from Bjorn Gudmundsson the C.E.O-Krafla Magma Testbed and Team By:  Robert Buluma In 2009, deep beneath Iceland’s iconic Krafla volcano, a drilling team made history. During the IDDP-1 project, their drill bit pierced into magma molten rock at just two kilometers below the surface. What began as an accident became a scientific revelation. For the first time, humans had safely accessed magma. This “Eureka” moment gave birth to an idea so daring it almost sounds like science fiction: the creation of a permanent observatory where magma could be directly studied. That idea became the  Krafla Magma Testbed (KMT) a visionary international project that promises to rewrite the future of geothermal science, volcanic monitoring, and sustainable energy. Why Krafla? The Perfect Laboratory Beneath Our Feet Krafla’s  geology is unique. It offers a known shallow magma body, decades of research...

UGM Pioneers Geothermal Cooling: A Game-Changer for Sustainable Campus Buildings in Indonesia

Harnessing the Earth's Hidden Fire: UGM's Revolutionary Leap into Geothermal Cooling for a Cooler, Greener Indonesia Posted on December 14, 2025 | By  Robert Buluma Picture this: It's a blistering afternoon in Jakarta, the kind where the humidity clings to your skin like a second layer, and the air conditioner hums relentlessly, devouring electricity powered by distant coal plants. The planet warms, sea levels rise, and our energy bills skyrocket. But what if the solution to cooling our cities lay not in the sky's fickle sun or the wind's whisper, but deep beneath our feet,in the simmering heat of the Earth itself? This isn't science fiction; it's the bold vision being championed by Universitas Gadjah Mada (UGM), Indonesia's premier academic powerhouse, as they ignite a geothermal revolution for building cooling systems. In a move that's as groundbreaking as it is timely, UGM is spearheading the transition to clean energy by tapping into Indonesia...

Potsdam Goes Deep: How an All-Electric Drilling Rig Is Turning the City’s Heating Completely Fossil-Free

Revolutionizing Urban Heating: UGS GmbH's Pioneering Geothermal Project in Potsdam By: Robert Buluma In the heart of Germany’s energy transition, a quiet but powerful revolution is taking place in Potsdam. UGS GmbH, a German subsidiary of the French energy storage specialist Geostock, has begun a landmark geothermal project that could redefine how entire cities stay warm in winter ,without burning a single drop of oil or cubic meter of gas. The project, awarded by the local utility Energie und Wasser Potsdam GmbH (EWP), focuses on the former site of the HKW Süd combined heat and power plant in southern Potsdam. The goal is ambitious: replace the aging gas-fired plant with deep geothermal energy and other renewables, eventually supplying tens of thousands of households with completely CO₂-free district heating. At the center of this transformation stands a piece of machinery that looks like something from the future: UGS’s fully modernized, all-electric drilling rig “Rig 110”. After...

How the Constellation–Calpine Merger Pushed Geothermal Into the Baseload Spotlight

Constellation–Calpine Merger: Why Geothermal and Firm Clean Power Now Matter More Than Ever By: Robert Buluma The U.S. electricity sector is entering a defining moment, one where scale, regulatory scrutiny, and the search for firm clean power, are converging. The approval of Constellation’s $26.6 billion acquisition of Calpine is not just a headline-grabbing merger; it is a powerful signal about the future structure of power markets and the growing strategic value of geothermal energy and other always-on renewables. As federal regulators force divestments, allow unprecedented scale, and reassert antitrust authority, one question becomes unavoidable: **where does geothermal fit in a power system increasingly dominated by mega-utilities? The Deal,and Why It Matters for Clean Baseload To close the acquisition, Constellation agreed to divest six power plants and a minority stake in a seventh across Texas, Pennsylvania, and Delaware. These concessions were demanded by federal regulators c...