Skip to main content

SWU & Eavor Geothermal Project in Neu-Ulm/Senden Fully Cleared After Seismic Survey Success

Deep Geothermal Energy Breakthrough: Seismic Survey Results Clear Path for Sustainable Project in Neu-Ulm and Senden

Published on November 28, 2025

SWU seismic survey confirms no major faults in Neu-Ulm/Senden. Deep geothermal project with Eavor GmbH cleared for full development – clean, 24/7 renewable heat ahead!

In the quest for clean, reliable energy sources, deep geothermal energy stands out as a game-changer. Imagine tapping into the Earth's natural heat reservoir endless, emission-free power available 24/7, unaffected by weather whims or fossil fuel fluctuations. That's the promise of deep geothermal energy, and today, we're thrilled to share a major milestone: the seismic survey results for a pioneering project in Neu-Ulm and Senden, Germany. Conducted by SWU Stadtwerke Ulm/Neu-Ulm GmbH, the findings confirm no major underground faults, greenlighting unrestricted progress. This isn't just good news for the regionit's a blueprint for sustainable energy solutions across Europe.

If you're searching for insights on geothermal energy projects, renewable energy innovations, or green energy in Germany, you've landed in the right spot. Let's dive into the details of this seismic investigation, its implications for deep geothermal feasibility, and why it's fueling optimism for a carbon-neutral future.

Understanding the Seismic Survey: Mapping the Earth's Hidden Layers

At the heart of any deep geothermal project lies a critical first step: understanding the subsurface. In February 2025, SWU launched a comprehensive 2D seismic survey to assess the viability of deep geothermal energy in the Neu-Ulm and Senden area. Spanning over 52 kilometers, this high-tech expedition used three specialized vibroseis trucks massive vehicles equipped with ground plates that generate controlled sound waves.

These vibrations penetrate deep into the Earth, bouncing off rock layers and returning as echoes captured by geophones (sensitive ground sensors). It's like creating an ultrasound image of the planet's crust, revealing structures invisible to the naked eye. The goal? To detect faults those pesky geological breaks where rock layers shift, potentially complicating drilling or risking seismic activity in closed-loop geothermal systems.

After months of meticulous data analysis, the results are in: No significant fault zones were identified at the proposed site. This pristine subsurface profile means the ground is stable and ideal for harnessing geothermal heat. For those new to the topic, a fault in this context isn't a minor crack it's a major fracture that could displace rock layers by meters or more, posing risks to borehole integrity and energy extraction efficiency.

This breakthrough underscores the precision of modern seismic survey techniques. By avoiding large faults, the project sidesteps common pitfalls in geothermal energy exploration, paving the way for safer, more cost-effective development. Experts in renewable energy geology will appreciate how this data aligns with global standards, similar to successful implementations in Iceland or the Basel project, but tailored to Bavaria's unique geology.

Project Leader's Vision: Stability Meets Innovation

Reinhard Wunder, the dedicated project leader at SWU, couldn't contain his enthusiasm. "We're overjoyed that the seismic survey has confirmed excellent conditions for our deep geothermal initiative," he stated. "The absence of major faults proves the site's stability, giving us confidence to advance. Partnering with Eavor GmbH, we'll now shift into detailed planning over the coming months."

This collaboration with Eavor, a leader in closed-loop geothermal tech, is no small detail. Eavor's innovative designs think modular, horizontal drilling that maximizes heat extraction without open reservoirs minimize environmental impact while boosting efficiency. Wunder's words echo a broader sentiment in the sustainable energy sector: reliable data like this seismic report isn't just technical it's a catalyst for action.

Looking ahead, the team is entering the "Process Design" phase. This involves blueprinting everything from surface infrastructure to borehole trajectories and securing permits. All findings will culminate in a comprehensive Engineering Report by late 2026, serving as SWU's go/no-go decision tool. For stakeholders eyeing geothermal project timelines, this structured approach highlights the blend of caution and ambition driving Germany's energy transition.

The Power of Deep Geothermal: A Reliable Pillar of Renewables

Why all the fuss over deep geothermal energy? In a world grappling with climate change, this technology emerges as a steadfast ally. Unlike solar or wind, which depend on sunlight and breezes, geothermal delivers baseload power constant, dispatchable energy that doesn't flicker off at night or during storms. It's sourced from the Earth's core heat, accessible at depths of 3-5 kilometers, where temperatures soar to 150°C or more.

The environmental perks are staggering. Deep geothermal projects produce zero CO₂ emissions during operation, slashing reliance on coal, gas, or oil. In Neu-Ulm and Senden, this could power thousands of homes and businesses with clean heat and electricity, contributing to Bavaria's goal of carbon neutrality by 2045. Plus, it's a local resource: no imported fuels, no supply chain vulnerabilitiesjust pure, regional resilience.

Economically, geothermal energy benefits shine through stable pricing. Fuel costs? Nonexistent. Once installed, operational expenses are low, shielding consumers from volatile markets. The SWU project exemplifies this: a compact facility with minimal surface footprint and near-silent operations, as the heavy lifting happens underground. Noise pollution? Barely a whisper. Visual impact? Negligible.

Geothermal boasts a capacity factor over 90%—far surpassing wind's 35% or solar's 25%. It's not hype; the International Energy Agency projects geothermal could supply 10% of global electricity by 2050, with Europe leading the charge through initiatives like this one.

Environmental and Economic Impacts: Building a Greener Neu-Ulm

Zooming out, the ripple effects of this geothermal energy project extend far beyond the drill site. In Neu-Ulm and Senden—vibrant communities in Baden-Württemberg reliable heat means warmer winters without the carbon footprint of traditional boilers. Businesses gain from uninterrupted energy, fostering growth in industries from manufacturing to tech.

Environmentally, it's a win for biodiversity. Closed-loop systems like Eavor's avoid water contamination risks associated with older open-loop designs. No chemicals injected, no aquifers disrupted just a sealed loop circulating fluid to capture and redistribute heat. This aligns with EU Green Deal mandates, positioning SWU as a frontrunner in sustainable district heating.

Economically, job creation is imminent. From geophysicists analyzing seismic data to engineers plotting boreholes, the project will employ locals, injecting vitality into the regional economy. Long-term, it promises energy independence, reducing import bills and buffering against global shocks like the 2022 gas crisis.

Comparatively, other renewable energy sources pale in consistency. Solar farms sprawl across hectares; offshore wind demands vast investments. Geothermal? It's subterranean stealth high output from a small plot. For urban planners pondering green energy integration, this model's scalability is irresistible.

Future Roadmap: From Design to Drilling and Beyond

With seismic hurdles cleared, the SWU team's focus sharpens on execution. The Process Design phase will refine surface plants—think efficient heat exchangers and grid tie-ins—while optimizing borehole paths to hit prime geothermal zones. Permitting follows, navigating Germany's rigorous environmental regs with data-backed confidence.

By end-2026, the Engineering Report will synthesize it all: seismic insights, hydraulic models, economic forecasts. If greenlit, drilling could commence in 2027, targeting operational status by 2030. This timeline mirrors successful European peers, like the Landau plant in Rhineland-Palatinate, which now supplies 5% of local power.

Challenges remain, of course. Upfront costs for deep drilling hover in the tens of millions, but subsidies from the KfW bank and EU funds mitigate this. Induced seismicity? The fault-free zone minimizes it, with monitoring tech as backup. For enthusiasts tracking geothermal energy challenges, SWU's transparencyvia press releases and community updates sets a collaborative tone.

Globally, this project inspires. Countries from the U.S. (with Utah's FORGE initiative) to Kenya (Ol Karia expansion) eye similar seismic-led advances. In Germany, it bolsters the 12-point Energiewende plan, proving deep geothermal feasibility in non-volcanic terrains.

Why This Matters: A Call to Action for Sustainable Energy

The seismic survey's green light isn't isolated it's a thread in the tapestry of climate action. As COP30 looms, stories like Neu-Ulm's remind us: innovation plus geology equals progress. For residents, it means cheaper, cleaner bills. For policymakers, a model for replication. For the planet, fewer emissions in the fight against 1.5°C warming.

SWU's commitment, echoed by Wunder, embodies optimism: "This stable foundation lets us build a hotter, greener future." If you're in energy, sustainability, or just curious about geothermal energy in Europe, follow this project's evolution. Subscribe to updates from SWU or dive into Eavor's tech specs.


In closing, deep geothermal energy isn't a distant dream—it's drilling-ready in Neu-Ulm. With no faults in sight, the path forward is clear, stable, and scorching with potential. What's your take on geothermal's role in renewables? Drop a comment below we'd love to hear.

Source:SWU

Connect with us: LinkedInX

 

Comments

Popular Posts

Meta and XGS Energy Partner on 150 MW Geothermal Power Project in New Mexico

Meta and XGS Energy Partner on 150 MW Geothermal Power Project in New Mexico A Game-Changer for AI, Clean Energy, and the Future By Robert Buluma – Alphaxioms Energy Blog In a bold move that signals the future of energy and technology convergence, XGS Energy and Meta Platforms, Inc. have announced a groundbreaking agreement to develop 150 megawatts (MW) of next-generation geothermal energy in New Mexico. This partnership not only promises to reshape the state's energy landscape but also underscores the growing demand for sustainable, round-the-clock power to fuel the age of artificial intelligence (AI) and data-driven economies. Clean Power Without Water – XGS’s Unique Edge At the heart of this partnership lies XGS Energy’s proprietary solid-state geothermal technology. Unlike traditional geothermal systems that rely heavily on water and specific geological conditions, XGS’s innovation enables electricity production from hot, dry rock  with zero operating water use. This water-inde...

PGE’s Lumut Balai Unit 2: The 55 MW Geothermal Breakthrough Powering Indonesia’s Clean Energy Future

PGE’s Lumut Balai Unit 2: A 55 MW Geothermal Triumph Rewriting Indonesia’s Clean Energy Future By:  Robert Buluma Indonesia has once again staked its claim as a global geothermal heavyweight. With the successful operationalization of the Lumut Balai Unit 2 Geothermal Power Plant, PT Pertamina Geothermal Energy Tbk (PGE) has delivered a strategic blow in the global race toward clean baseload energy. More than just a 55 MW addition to the country’s energy mix, this project marks a bold step in Indonesia’s ambition to expand its geothermal capacity to 1 gigawatt within the next few years. In a world grappling with climate volatility, unstable energy prices, and growing demand for reliable renewable power, this achievement resonates far beyond Indonesia’s borders. It signals a shift — a declaration that geothermal energy is rapidly maturing, scaling, and proving itself as the backbone of modern clean-energy systems. A Milestone Project in a Region Rich With Geothermal Potential Lumut ...

The Geothermal Boom Begins: New Investments, Bold Tech, and a 20× Outlook by 2050

Global Geothermal Market Heats Up: New Investment Plans Revealed for 2025 By: Robert Buluma The global geothermal energy sector is entering a transformative phase in 2025, driven by surging investments, accelerating technology adoption, and favorable policy shifts. As clean baseload capacity becomes more critical to the world’s energy transition, stakeholders are increasingly turning to geothermal power—not just for electricity generation, but also for industrial heat, green hydrogen, and direct-use applications. This shift could solidify geothermal as a cornerstone of sustainable energy infrastructure in the decades ahead. 1. A Market Poised for Steady Growth According to industry forecasts, the global geothermal energy market is on track for major expansion.   We  project the sector will grow from USD 56.0 billion in 2025 to USD 85.0 billion by 2035 , a compound annual growth rate (CAGR) of 4.2%. Business Research Insights forecasts a CAGR of 7.3% between 2025 and 20...

Biliran II Geothermal Project: The Philippines’ Next 200 MW Renewable Baseload Power Breakthrough

Biliran II: The Philippines' Next 200 MW Geothermal Powerhouse Poised to Transform Data Centers and Industrial Energy Security By:  Robert Buluma In a world racing toward stable and decarbonized energy systems, geothermal power continues to stand out as one of the most reliable and future-proof renewable energy solutions. The Philippines—already home to the world’s third-largest geothermal capacity—is once again making headlines with a transformative new development: the ~200 MW Biliran II Geothermal Project , now advancing toward its final resource confirmation. This landmark project represents a bold new era of geothermal development in Southeast Asia, tapping into renewable baseload power to supply industries that can no longer afford instability, unpredictable pricing, or carbon-heavy electricity. With the rising energy demands of data centers, manufacturing hubs, and digital infrastructure, Biliran II could become a strategic cornerstone in securing long-term energy resilienc...

Archi Indonesia and Ormat Launch 40 MW Geothermal Venture in North Sulawesi

Archi Indonesia and Ormat Form Powerful Geothermal Joint Venture: A 40 MW Vision That Could Redefine North Sulawesi’s Energy Future By: Robert Buluma In a decisive move that signals Indonesia’s accelerating transition toward renewable energy, Archi Indonesia (ARCI ) —one of the country’s largest pure-play gold mining companies—has joined forces with global geothermal powerhouse Ormat Technologies . Their new joint venture, PT Toka Tindung Geothermal (TTG) , aims to deliver a 40-megawatt geothermal power plant within ARCI’s mining concession in North Sulawesi. The partnership is more than a business deal. It represents a strategic realignment in Indonesia’s energy landscape, a recalibration of ARCI’s identity, and a major step forward for geothermal development in Southeast Asia. Below is a deep, comprehensive look at what this collaboration means, what it could unlock, and why it deserves the attention of every energy observer today. A Bold Partnership: ARCI Holds 5%, Ormat Lead...

OMV GeoTherm NL BV Takes Over Major Parts of Shell’s Dutch Geothermal Portfolio

OMV GeoTherm NL BV Takes Over Major Segments of Shell Geothermie’s Dutch Geothermal Portfolio By:  Robert Buluma In a significant development for the Dutch geothermal sector, a new and highly experienced international player has stepped into the arena. OMV Green Energy GmbH—operating in the Netherlands under the name OMV GeoTherm NL BV —has officially taken over a large portion of Shell Geothermie’s geothermal portfolio . This transition marks an important moment for the growth, diversification, and continued professionalization of geothermal energy development in the Netherlands. With this move, OMV becomes a central actor in several high-potential geothermal projects across Rotterdam, Capelle , and Rijnland , reinforcing its long-term commitment to supporting renewable energy systems across Europe. A New Powerhouse in Dutch Geothermal Development OMV, headquartered in Austria, is internationally recognized for its extensive knowledge of subsurface geology, drilling techno...

Scotland Breaks Ground: NHS Grampian and TownRock Energy Launch First Deep Geothermal Heating Plant

Scotland’s First Deep Geothermal Heating Plant: NHS Grampian and TownRock Energy Explore Renewable Future By:  Robert Buluma Scotland is taking a significant step toward renewable energy with the potential construction of its first deep geothermal heating plant in Aberdeen. A recent Scottish Government-funded feasibility study, conducted by TownRock Energy in partnership with NHS Grampian , has revealed the immense potential of harnessing geothermal energy beneath the city. This groundbreaking initiative could transform heating systems, reduce carbon emissions, and support the local community in tackling rising energy costs. Feasibility Study Highlights Geothermal Potential The desk-based study, completed by TownRock Energy, examined three different geothermal technologies for the Foresterhill Health Campus . The study concluded that an Enhanced Geothermal System (EGS) , reaching depths of 3.5km to 5km, would provide the most efficient and reliable source of renewable heat. ...

NZ and Iceland Forge Strategic Geothermal Partnership at COP30

New Zealand and Iceland Forge a Historic Partnership to Advance Superhot Geothermal Energy By: Robert Buluma In a defining moment for global clean energy innovation, New Zealand and Iceland have signed a landmark agreement to deepen cooperation on geothermal energy development. The arrangement—formalized at COP30 in Belém, Brazil—positions both nations at the forefront of a new era of renewable energy technology, especially in the emerging field of superhot and supercritical geothermal systems. This partnership is more than a diplomatic gesture; it represents a powerful fusion of scientific expertise, drilling innovation, and shared national ambition. For countries looking to harness geothermal as a reliable baseload solution, the New Zealand–Iceland alliance sets a new standard for international energy collaboration. A Partnership Rooted in Decades of Geothermal Excellence New Zealand and Iceland are globally recognized for their geothermal resources and world-leading technical expert...

GeoHardt Unveils Mannheim Site for First Geothermal Heating Plant to Boost Renewable Energy

GeoHardt GmbH announces Mannheim site for its first geothermal heating plant in Rheinau, supporting MVV’s goal of 100% renewable district heating and driving the city’s energy transition. By: Robert Buluma GeoHardt GmbH has officially revealed its first geothermal heating plant site in Mannheim, marking a major milestone for renewable energy in the region. The selected location, in the southeastern part of Mannheim’s Rheinau district, will serve as the foundation for what could become a series of up to three geothermal heating plants planned by the company. This initiative aligns with MVV’s ambitious goal of transitioning district heating to 100% renewable energy, positioning Mannheim as a leader in Germany’s energy transition. Strategic Location: Franzosenhäusel in Mannheim The chosen site, known locally as Franzosenhäusel, is situated between the Bundesstraße B36 and the A6 motorway, south of Hallenbuckel Street. Covering an area of approximately 28,000 square meters, the site will...

Zanskar’s Humboldt County Discovery Could Become Nevada’s Largest Geothermal Power Plant

Nevada’s Next Geothermal Giant: Zanskar’s Pumpernickel Discovery Signals a Clean Energy Breakthrough By:  Robert Buluma Nevada is no stranger to geothermal power — but a new discovery in Humboldt County may redefine the state’s renewable energy landscape. Zanskar , a cutting-edge geothermal exploration company using artificial intelligence to hunt for hidden underground heat, has successfully drilled a major geothermal well that could become Nevada’s largest geothermal power facility within just three years. This milestone, known as the Pumpernickel well , is more than a drilling success. It marks the emergence of a bold strategy, a new wave of discoveries, and a significant step toward reliable, 24/7 carbon-free energy for the Western United States. A Breakthrough Hidden Beneath the Surface Zanskar’s Head of Geoscience, Aubry DeReuil , explained that geothermal energy is often associated with obvious surface indicators like hot springs. But the company’s philosophy mirrors...