Skip to main content

GA Drilling and NREL Forge a New Path for Ultra-Deep Geothermal Energy

Breaking New Ground: GA Drilling and NREL Join Forces to Revolutionize Geothermal Energy

Geothermal energy has long been the unsung hero of the renewable energy sector. With the potential to provide consistent, baseload power, it remains an underutilized resource due to the challenges of deep drilling. Now, GA Drilling, a pioneering geothermal technology company, has partnered with the U.S. National Renewable Energy Laboratory (NREL) to take a massive leap forward in unlocking geothermal’s full potential.

A Partnership for the Future

GA Drilling and NREL are collaborating to bring a game-changing innovation to the field—an advanced high-temperature downhole generator designed to enhance geothermal drilling applications. This cutting-edge technology will be integrated into GA Drilling’s PLASMABIT® Hybrid drilling solution, a system poised to transform how deep geothermal resources are accessed.

Igor Kocis, CEO of GA Drilling, emphasizes the significance of this alliance, stating, “Geothermal energy has the potential to revolutionize clean energy production, and this collaboration with NREL marks a significant step toward making deep geothermal drilling more viable and efficient.” By leveraging NREL’s extensive research and expertise, GA Drilling is set to overcome long-standing technical barriers that have hindered deep geothermal exploration.

The Innovation: A Self-Sustaining Power Source at Depth

Traditional geothermal drilling faces major hurdles—chief among them is the challenge of powering drill bits at extreme depths. Most conventional systems rely on cumbersome and costly external power cables that can limit efficiency and drive up operational costs.


This is where the NREL-developed downhole generator comes into play. Designed to withstand temperatures up to 250°C, this generator produces electricity directly at the drill bit, eliminating the need for external power sources. This breakthrough significantly enhances drilling efficiency, reduces operational delays, and makes ultra-deep geothermal energy more economically viable than ever before.

Why This Matters: Unlocking a Vast Energy Source

Despite geothermal energy’s reliability and abundance, it currently accounts for less than 0.2% of global energy production. The challenge has always been accessing deep geothermal reservoirs in an efficient and cost-effective manner. With the integration of NREL’s high-temperature downhole generator into GA Drilling’s PLASMABIT® Hybrid system, that challenge is being tackled head-on.

Ultra-deep geothermal drilling has the potential to tap into an almost limitless supply of clean energy, making it a crucial component in the global transition to renewables. Unlike solar and wind, geothermal power is not dependent on weather conditions, providing a stable and uninterrupted energy source that could replace fossil fuels at scale.

GA Drilling’s Commitment to a Renewable Future

GA Drilling has spent over a decade refining its geothermal drilling technologies, amassing more than 25 patents and securing multiple funding sources, including venture capital, industrial partnerships, and 20 European Union research grants. With a team of over 50 engineers, the company is dedicated to making geothermal energy a mainstream player in the renewable energy sector.


This partnership with NREL is more than just another project—it’s a critical step toward making clean, abundant, and locally sourced energy a reality. By addressing the core limitations of deep geothermal drilling, GA Drilling and NREL are paving the way for a future where geothermal power is a cornerstone of the global energy mix.


The Road Ahead: From Lab to Field

The next phase of this collaboration involves full-scale field testing, bringing the high-temperature downhole generator into commercial drilling environments. If successful, this technology could be the key to unlocking geothermal energy at an unprecedented scale, making it one of the most viable and cost-effective renewable energy solutions available today.

As the world accelerates its transition away from fossil fuels, the importance of breakthrough innovations in geothermal energy cannot be overstated. With GA Drilling and NREL leading the charge, the dream of harnessing “Geothermal Anywhere” is closer than ever to becoming a reality. 

Source:Press Wire

Connect with us:LinkedIn ,X

Comments

Popular posts

Meta and XGS Energy Partner on 150 MW Geothermal Power Project in New Mexico

Meta and XGS Energy Partner on 150 MW Geothermal Power Project in New Mexico A Game-Changer for AI, Clean Energy, and the Future By Robert Buluma – Alphaxioms Energy Blog In a bold move that signals the future of energy and technology convergence, XGS Energy and Meta Platforms, Inc. have announced a groundbreaking agreement to develop 150 megawatts (MW) of next-generation geothermal energy in New Mexico. This partnership not only promises to reshape the state's energy landscape but also underscores the growing demand for sustainable, round-the-clock power to fuel the age of artificial intelligence (AI) and data-driven economies. Clean Power Without Water – XGS’s Unique Edge At the heart of this partnership lies XGS Energy’s proprietary solid-state geothermal technology. Unlike traditional geothermal systems that rely heavily on water and specific geological conditions, XGS’s innovation enables electricity production from hot, dry rock  with zero operating water use. This water-inde...

INTERVIEW, Geretsried and Beyond: Eavor’s Blueprint for Reliable, Sustainable Energy

Robert Buluma :  Alphaxioms Responses were provided by Jeanine Vany, Executive Vice-President of Corporate Affairs, Eavor . Can you explain the key technological advancements in the latest iteration of the Eavor-Loop™ system? We have made a number of technological advancements at our project in Geretsried Germany . This includes innovation and learning resulting in dramatic improvements in our drilling performance and we’re proud to talk about our technology. For example, Eavor recently announced successful implementation of our in-house AMR (active magnetic ranging) tool which makes drilling more accurate and efficient. Eavor-Link™ AMR uses magnetic ranging while drilling to maintain constant alignment as it drills two wells at approximately 100 metres apart before they are intersected to create a continuous geothermal loop, which is then sealed with Eavor’s proprietary Rock-Pipe™ formula. With real-time data transmission between downhole sensors, the technology ensures tighter bo...

Driving the UK Toward Net Zero: Chris Sladen on Geothermal’s Untapped Potential

Alphaxioms, we talked to Chris Sladen about his involvement in geothermal both in the UK, and globally By:  Robert Buluma Chris, please begin by explaining a little about yourself, and why you have a passion for geothermal? I have spent over 45 years involved in energy. Following undergraduate studies in geology at Southampton University, and a PhD in sedimentology at Reading University, I joined the energy sector in Aberdeen in 1980. It was a fascinating era when it seemed like at least one giant oil & gas field was discovered offshore every month; the wealth creation for the UK was gigantic. I got to see so much geology and rocks - my true passion. I moved to China in late 1983; not today’s China, this was over 40 years ago, a country closed for decades and embarking on an open-door policy, in part to bring both investment and technology. I became very interested in energy trends, energy politics, and new geography created by changing politics leading to opportunities for ene...

EAPOSYS and Halliburton Unite to Supercharge the Future of Advanced Geothermal Systems

EAPOSYS  Partners with  Halliburton to Accelerate the Deployment of Advanced Geothermal Systems By:  Robert Buluma Biel/Bienne, Switzerland – October 10th, 2025  The race toward a sustainable energy future just got hotter. EAPOSYS SA, a Swiss geothermal innovation company, has joined forces with Halliburton (NYSE: HAL) to fast-track the deployment of its groundbreaking Advanced Geothermal Systems (AGS) . Under the newly signed agreement, Halliburton will conduct a subsurface feasibility study to evaluate and optimize the scalability of EAPOSYS’s patented closed-loop geothermal architecture. This collaboration will refine well designs, assess stratigraphic conditions, and minimize drilling risks  paving the way for the industrial-scale rollout of clean, predictable geothermal energy . “EAPOSYS SA has developed an innovative, patented, closed-loop architecture to deploy AGS anywhere in the world,” said Naomi Vouillamoz , CEO and co-founder of EAPOSYS. “AGS ...

Utah and New Zealand Join Forces to Supercharge Geothermal Energy Innovation under “Operation Gigawatt”

A New Chapter in Geothermal Diplomacy: Utah & New Zealand Seal Geothermal Pact By:  Robert Buluma In October 2025, a significant milestone was achieved when Spencer Cox, Governor of Utah, and Simon Watts, New Zealand’s Minister for Energy, signed a Letter of Intent in Auckland. The agreement formalises cooperation between Utah and New Zealand, with a special focus on developing geothermal energy as part of their shared goal to expand and diversify clean energy generation. Key Elements of the Agreement The newly signed agreement aims to strengthen collaboration in energy generation, diversification, and innovation — with geothermal energy taking center stage. The partnership also aligns with Utah’s broader mission, Operation Gigawatt , which seeks to create energy abundance through the development of renewable and advanced energy technologies. This signing was part of a wider trade and innovation mission involving cooperation in sectors such as critical minerals, clean energy, ...

XGS Energy Achieves 3,000-Hour Milestone in Geothermal Innovation

XGS Energy  Achieves 3,000-Hour Milestone for Water-Independent Geothermal System By : Robert Buluma HOUSTON, Sept 30, 2025 – In a groundbreaking achievement for the geothermal sector, XGS Energy has announced the successful 3,000-hour operation of its water-independent geothermal system at commercial scale. This milestone not only validates the system’s commercial economics but also positions XGS as the first company to demonstrate such technology under real-world, commercial conditions. A New Era in Geothermal Innovation The operations took place at the Coso Geothermal Field in California’s Western Mojave Desert, a site owned by Atlantica Sustainable Infrastructure and operated by Coso Operating Company. XGS Energy  revitalized a well that had been idle for over two decades, installing its proprietary closed-loop geothermal system enhanced by Thermal Reach Enhancement (TRE) technology. Flow testing delivered a record performance, maintaining a sustained temperature differenc...

Geothermal Projects In Africa, Countries Overview

 Geothermal Projects in Africa: Country-wise Overview By : Robert Buluma Africa is increasingly turning to geothermal energy as a sustainable solution to meet its growing electricity demands. With abundant geothermal resources spread across the continent, several countries have embarked on ambitious projects to harness this clean and renewable energy source. Let's delve into the geothermal projects in various African countries, highlighting key players and prospects. Algeria Algeria is exploring its geothermal potential, particularly in the northern regions. Although in the early stages, initiatives are underway to assess feasibility and potential locations for geothermal power plants.  Burundi Burundi has shown interest in developing its geothermal resources, primarily in the northwest region near Lake Tanganyika. The government is actively seeking partnerships with international firms to kickstart exploration and development efforts. Comoros The Comoros Islands are situated ...

Mastering the Subsurface: Insights from a Geothermal Reservoir Engineer

Geothermal energy is often called the “quiet backbone” of the clean energy transition. To understand the science, challenges, and innovations driving this sector, we spoke with a seasoned geothermal reservoir engineer with experience spanning the Andes, Nevada, Utah, and volcanic fields worldwide. Here’s what they shared. By:  Robert Buluma 1. What sparked your passion for geothermal reservoir engineering, and did you ever imagine yourself working in some of the world’s most challenging geothermal fields? My passion was sparked during my early career in the petroleum industry, specifically in reservoirs. I was fascinated by the subsurface—how fluids move, how heat and pressure interact but it wasn’t until I worked on projects in Peru that I realized geothermal offered the chance to apply my skills to clean energy. I never imagined I would later work on Enhanced Geothermal Systems (EGS) projects in Nevada and Utah or Andean volcanic fields, where the geology is as unforgiving as it ...

From Iceland to the World: A Geothermal Engineer’s Journey

A Global Journey in Geothermal: Insights from an Industry Expert From Iceland’s pioneering geothermal plants to Kenya’s wellhead projects and Indonesia’s remote fields, few By: Robert Buluma Image: Lydur skulason with a geothermal well head  professionals have had as wide-ranging a journey in geothermal as Lydur Skulason With decades of hands-on experience in marine engineering, power plant operations, and international project management, he has combined technical expertise with global collaboration to help shape the sector’s growth. In this conversation, he shares lessons from his career, insights on geothermal innovation, and his vision for the future of clean energy. Career & Experience Can you walk us through your career in geothermal and how it began? I began my career in Iceland, where geothermal energy is a natural part of daily life and a cornerstone of the national energy system. After studying Marine Engineering and Mechanical Technology at  Reykjavik Univ...

Turboden to Deliver 180 MW of Gen-2 ORC Plants for Fervo’s Cape Station Geothermal Project in Utah

Turboden ,  Fervo and the Future of Geothermal: 180 MW of Gen-2 ORC Plants for Cape Station, Utah By:  Robert Buluma October 2, 2025    In a landmark move for clean energy and geothermal power, Turboden America LLC   the U.S. arm of Turboden S.p.A. (a Mitsubishi Heavy Industries group company)  has been selected to supply 180 MW of Gen-2 Organic Rankine Cycle (ORC) power plants for Fervo Energy’s Cape Station geothermal project in Utah. A New Milestone in Geothermal Deployment This award relates to Phase II of the Cape Station development, following  Turboden’s earlier participation in Phase I. Under Phase II, Turboden will provide three ORC units , each with a gross output of 60 MWe, summing to 180 MWe. Once installed and operational (targeted by 2028), these Gen-2 units will bring the total ORC capacity on site to 300 MWe , making Cape Station one of the largest geothermal installations globally. The earlier Phase I installation, invol...