Skip to main content

DeepStor: Turning a Former Oil Field into a Giant Underground Heat Battery at KIT Campus North

DeepStor: Turning a Former Oil Field into a Giant Underground Heat Battery at KIT Campus North

Published by Robert Buluma : | November 2025

Imagine storing the surplus summer heat deep underground and bringing it back up in winter to warm an entire research campus  without burning any gas or emitting CO₂. That is exactly what the DeepStor research infrastructure at Karlsruhe Institute of Technology (KIT) Campus North is setting out to prove.

 From black gold to green heat

The Upper Rhine Graben, one of Europe’s classic oil provinces, still hides dozens of depleted hydrocarbon reservoirs beneath its surface. Instead of abandoning them, the DeepStor team wants to repurpose one of these former oil fields as a high-temperature seasonal heat storage  essentially a gigantic geothermal battery.

Hot water (up to 130–150 °C) would be injected in summer when solar thermal collectors, waste heat from industry or even waste incineration plants produce more heat than needed. In winter, the warm water is pumped back up and the heat is fed into the campus district heating network. If the concept works at demonstration scale, the storage potential in the Karlsruhe region alone is enormous.

The heart of the project: the DeepStor-1 exploratory borehole

To find out whether the geology is really suitable, the scientists are drilling a fully cored research borehole approximately 1,400 metres deep directly on KIT Campus North, right next to the former Leopoldshafen oil field.

What makes DeepStor-1 special:

Continuous coring in the reservoir section → undisturbed rock samples for the laboratory  

Comprehensive downhole logging and hydraulic testing  
Long-term pressure and temperature monitoring  
Intensive seismic monitoring with three different sensor types (geophones, fibre-optic DAS and broadband stations)  
Real-time data transmission and public transparency dashboard (under development)

The drilling permit and the main operating plan were officially approved in 2025. Site preparation is already underway, and spud-in of DeepStor-1 is expected in the coming months.

Science meets society  the GECKO co-design process



DeepStor is not being developed in an ivory tower. In the accompanying project GECKO (jointly run by KIT and the Öko-Institut e.V.), citizens, local politicians, NGOs and campus users were involved from the very beginning. In workshops and a structured co-design process, a concept for a climate-neutral heat supply of the entire Campus North using geothermal energy and high-temperature storage was developed together.

The result: broad acceptance and concrete suggestions that are now flowing directly into DeepStor planning. In the next phase, interested citizens will even be able to participate in data collection themselves in a citizen-science programme  a genuine insight into cutting-edge geoenergy research.

Why this matters ,now more than ever

Germany aims for a complete phase-out of fossil heat by 2045.  
Heating and cooling account for more than half of final energy consumption.  
 heat storage is the missing piece for a 100 % renewable heat supply in regions without large hydropower or biomass potential.

Projects like DeepStor show that the energy transition underground is not a vision of the distant future, but can start tomorrow — sometimes literally in our own backyard.

Want to know more?

 Detailed project page (German/English): https://www.deepstor.de  
Contact: Dr. Bastian Rudolph & Prof. Dr. Thomas Kohl (KIT Institute for Nuclear Waste Disposal — Geoenergy Division)  
Soon online: comprehensive FAQ section and live seismic monitoring data

The former oil field near Karlsruhe could soon become one of the world’s first demonstrated high-temperature aquifer thermal energy storages (HT-ATES) in a depleted hydrocarbon reservoir. DeepStor is turning a relic of the fossil age into a cornerstone of the renewable future.

Stay tuned — the drill bit is about to turn!

KIT – The Research University in the Helmholtz Association  
Cover picture: Prof. Dr. Eva Schill

Source:  KIT EDU

Connect with us: LinkedIn , X

Comments

Popular posts from this blog

Amsterdam Strikes Geothermal Gold: Hot, Thick, Permeable Reservoir Confirmed

Breakthrough Beneath the Beach: Amsterdam Region Hits Geothermal Paydirt at Strandeiland By: Robert Buluma The Netherlands just took a giant leap toward fossil-free heating. On the artificial island of Strandeiland (part of Amsterdam’s fast-growing IJburg district), the SCAN exploration well has officially confirmed what the geothermal community has been hoping for: a thick, hot, and , most importantly permeable reservoir in the Slochteren Formation. Key numbers that matter:   Reservoir thickness: 152 meters   Bottom-hole temperature: 66 °C   Permeability: confirmed via successful production and injection tests   That’s not screaming-hot by Icelandic standards, but for direct-use district heating in one of Europe’s densest urban areas, 66 °C is more than enough to supply thousands of homes with clean, baseload heat – forever. Why This Well Changes Everything for the Netherlands The Dutch government launched the SCAN program (Seismic Campaign Nethe...

Zanskar’s Big Blind: First Blind Geothermal Discovery in 30 Years

Big Blind: The Geothermal Discovery That Changes Everything By: Robert Buluma Utah startup  Zanskar Geothermal quietly dropped one of the most important announcements in American energy in decades. They discovered and confirmed “Big Blind” ,the first completely blind, commercial-grade geothermal system found in the United States in over thirty years. Let that sink in. No hot springs.   No fumaroles.   No steaming ground.   No prior wells.   Zero surface expression whatsoever. Just desert, sagebrush, and – 7,000 feet below,  a reservoir hot enough and permeable enough to support gigawatt-scale power production. This isn’t incremental progress. This is a paradigm breaker. Why “Blind” Discoveries Matter So Much For the last 40 years, geothermal development in the U.S. has been geographically handcuffed. You could only build plants where nature advertised the resource on the surface – think Yellowstone, The Geysers, or Imperial Valley. Ever...

Hawaii’s Underground Secret to Cheaper, Greener Cooling Revealed

Unlocking Hawaii’s Hidden Cooling Power: New Report Reveals Huge Potential for Geothermal Cooling on Oahu (2025) By:  Robert Buluma Could the same volcanic islands that give Hawaii its famous heat also provide the solution to cool its buildings , without crushing the electric grid?   A groundbreaking new report released December 8, 2025, by the University of Hawaiʻi at Mānoa (UHM) and Lawrence Berkeley National Laboratory (LBNL) says the answer is a resounding yes. Shallow geothermal heat exchangers (GHEs) , also known as geothermal heat pumps or ground-source heat pumps ,could dramatically cut cooling costs and electricity demand across Oahu, especially for large buildings like schools, military bases, and university facilities. Here’s everything you need to know about this exciting development in Hawaii geothermal cooling technology. Why Hawaii Is Perfectly Suited for Geothermal Cooling Most of the world uses geothermal heat pumps for heating in cold climates. Hawaii ...

American Critical Resources and Plum Acquisition Corp. IV Sign LOI for SPAC Merger to Advance U.S. Geothermal Lithium Project

Revolutionizing Energy: The Synergy of Geothermal Power and Lithium Extraction at Hell's Kitchen Posted by  Robert Buluma  on December 20, 2025 In an era where the world is racing toward sustainable energy solutions, the intersection of geothermal power and lithium production is emerging as a game-changer. As electric vehicles (EVs), renewable energy storage, and advanced technologies demand ever-increasing supplies of critical minerals, innovative projects are stepping up to meet the challenge. One such groundbreaking initiative is the Hell's Kitchen project by American Critical Resources (ACR), a subsidiary of Controlled Thermal Resources Holdings Inc. (CTR) . This California-based endeavor not only harnesses the Earth's natural heat for clean electricity but also extracts lithium a vital component in batteries ,directly from geothermal brines. With a recent announcement of a proposed business combination with Plum Acquisition Corp. IV (Nasdaq: PLMK), a special purpose ac...

Strataphy and Baker Hughes Partner to Accelerate Geothermal Cooling in Saudi Arabia

Strataphy and Baker Hughes Forge Strategic Alliance to Accelerate Geothermal Cooling and Saudi Arabia’s Energy Transition By: Robert Buluma Saudi Arabia’s journey toward a low-carbon, diversified energy future has taken a decisive step forward with the signing of a strategic Memorandum of Understanding (MoU) between Strataphy and global energy technology leader Baker Hughes. Announced in Khobar in December 2025, the partnership signals a powerful convergence of deep-tech innovation and industrial-scale execution,aimed squarely at accelerating geothermal cooling and advancing the Kingdom’s broader energy transition agenda. At a time when cooling demand is surging across the Middle East,driven by rapid urbanization, giga-projects, data centers, and industrial expansion,this collaboration positions geothermal energy not merely as an alternative, but as a cornerstone technology for sustainable infrastructure in Saudi Arabia. A Landmark Agreement with Strategic Implications Under the MoU,...

Eavor’s Geretsried Closed-Loop Geothermal Plant Now Powers the Grid

Eavor Technologies Achieves Historic Milestone: World’s First Commercial-Scale Closed-Loop Geothermal System Now Delivering Power in Geretsried, Germany Published: December 2025 By:  Robert Buluma The Day Geothermal Changed Forever On a crisp Bavarian morning in late 2025, a quiet revolution in clean energy officially went live.   Eavor Technologies Inc ., the Calgary-based pioneer of closed-loop geothermal technology, announced that its flagship commercial project in Geretsried, Germany has begun delivering power to the grid becoming the world’s first utility-scale multilateral closed-loop geothermal system to achieve commercial operation. For anyone who has followed the geothermal sector for the last decade, this is nothing short of seismic (pun intended). What Makes Eavor’s Closed-Loop System Truly Disruptive? Traditional geothermal plants rely on naturally occurring hot water reservoirs or enhanced geothermal systems (EGS) that require hydraulic fracturing and massiv...

How the Constellation–Calpine Merger Pushed Geothermal Into the Baseload Spotlight

Constellation–Calpine Merger: Why Geothermal and Firm Clean Power Now Matter More Than Ever By: Robert Buluma The U.S. electricity sector is entering a defining moment, one where scale, regulatory scrutiny, and the search for firm clean power, are converging. The approval of Constellation’s $26.6 billion acquisition of Calpine is not just a headline-grabbing merger; it is a powerful signal about the future structure of power markets and the growing strategic value of geothermal energy and other always-on renewables. As federal regulators force divestments, allow unprecedented scale, and reassert antitrust authority, one question becomes unavoidable: **where does geothermal fit in a power system increasingly dominated by mega-utilities? The Deal,and Why It Matters for Clean Baseload To close the acquisition, Constellation agreed to divest six power plants and a minority stake in a seventh across Texas, Pennsylvania, and Delaware. These concessions were demanded by federal regulators c...

Europe’s Underground Energy Revolution: EGEC Demands 250 GW Geothermal by 2040

Europe’s Geothermal Revolution Is Coming: EGEC Demands a 250 GW Target by 2040 – Here’s Why 2026 Will Be Make-or-Break By: Robert Buluma Published: December 9, 2025   On 5 December 2025, the European Geothermal Energy Council (EGEC) dropped a bombshell policy paper with a crystal-clear message to Brussels: Europe is sleeping on the biggest indigenous, baseload, 24/7 renewable energy source under its feet , and it’s time to wake up. Titled ,The European Geothermal Strategy and Action Plan , Making Europe competitive, secure and affordable, the document is the strongest industry call yet for the European Commission to publish a dedicated European Geothermal Strategy and Action Plan in Q1 2026. And the ambition is massive: 250 GW of installed geothermal capacity by 2040 a six-fold increase from today’s ~44 GW (mostly district heating and a handful of power plants). Why Now? Because Europe Can No Longer Afford to Wait Since Russia’s invasion of Ukraine, Europe has been laser-focu...

Taiwan Drills 4,000m in Yilan, Unlocks Deep Geothermal Power

Breakthrough in Taiwan’s Deep Geothermal Energy: Academia Sinica and CPC Corporation Drill Nearly 4,000 Meters in Yilan and Find High-Potential Reservoir Published: December 10, 2025 By:  Robert Buluma   In a historic milestone for Taiwan’s renewable energy journey, Academia Sinica (Central Research Academy) and Taiwan’s state-owned CPC Corporation have successfully completed the island’s first-ever “deep geothermal exploratory well” in Yuanshan Township, Yilan County. The well reached a depth of nearly 4,000 meters, recorded a bottom-hole temperature close to 150 °C, and confirmed the existence of an upwelling heat source beneath the northern Yilan Plain. Researchers are now calling it a “high-potential geothermal reservoir” that could become a cornerstone of Taiwan’s green energy transition. From Anxiety to Excitement: The Temperature Surprise Dr. Ji-Chen Lee (李建成), principal investigator of the “Taiwan Geothermal Research and Technology Development Project” and researcher a...

Potsdam Goes Deep: How an All-Electric Drilling Rig Is Turning the City’s Heating Completely Fossil-Free

Revolutionizing Urban Heating: UGS GmbH's Pioneering Geothermal Project in Potsdam By: Robert Buluma In the heart of Germany’s energy transition, a quiet but powerful revolution is taking place in Potsdam. UGS GmbH, a German subsidiary of the French energy storage specialist Geostock, has begun a landmark geothermal project that could redefine how entire cities stay warm in winter ,without burning a single drop of oil or cubic meter of gas. The project, awarded by the local utility Energie und Wasser Potsdam GmbH (EWP), focuses on the former site of the HKW Süd combined heat and power plant in southern Potsdam. The goal is ambitious: replace the aging gas-fired plant with deep geothermal energy and other renewables, eventually supplying tens of thousands of households with completely CO₂-free district heating. At the center of this transformation stands a piece of machinery that looks like something from the future: UGS’s fully modernized, all-electric drilling rig “Rig 110”. After...