Skip to main content

Global Geothermal Insights: An Exclusive Interview with Drilling Engineer Sam Abraham

Global Geothermal Insights: Interview with Sam Abraham the Geothermal Global Technical Advisor at Halliburton

This interview was done by Robert Buluma on 5th of November 7:30 Am EST

At  Alphaxioms , we are committed to uncovering the deeper truths behind geothermal energy , the drilling, the risks, the innovations, and the frontiers. Today we welcome Sam Abraham, a veteran drilling engineer whose global geothermal experience spans more than 25 years. From oil & gas beginnings to geothermal hotspots around the world, Sam shares his journey, insights, and advice for the next generation.


Career Journey & Background

Sam, could you tell us about your career path and what led you into geothermal drilling?
I have a background in oil and gas — seven years since 1991. I served as a base manager in Jakarta for three years, and also worked a little in geothermal alongside oil & gas. In 2005 I moved to New Zealand, given its vast geothermal resources. From there I moved to the USA as a drilling engineer. For the past 25 years I’ve held global geothermal positions. Oil & gas and geothermal are more of the same — but the equipment sizes in geothermal are bigger. The BOP and bit sizes are larger.

Having worked on geothermal projects worldwide, what experiences stand out as the most defining in your career?
One that stands out is Hawaii drilling: you’re sitting 15 km away from a volcano  which has been active since 1984 while you wait on a possible magma eruption. To navigate that, we had to innovate our drilling bits, cementing methods, and manage massive logistics — because supply lines had to connect back to Los Angeles, miles away.

“You’re sitting 15 km from a volcano, every decision could mean success or affect the project.”

Technical Expertise & Insights

Geothermal drilling often faces unique challenges compared to oil & gas. What are the key technical differences?
There are very high temperatures, possible volcanoes, and even lava intrusion. Some formations are fragile. Hydrogen sulphide influx. Brine is corrosive. The pH can be 2–3, which affects casing and cementing. Oil & gas may be replenished; geothermal tends to have a PPA of at least 25 years — well integrity is a key factor.

What are the most common drilling challenges you encounter, and how do you solve them?
For temperatures, we use mud cooling – chillers, for example in Hawaii where we hit 300 °C.
For lost circulation:

  • Add 5–10% materials like wheat, rice, and peanut husks.
  • If severe, 20–25% more additive.
  • In extreme cases, 40-45% cement plugs are added.
  • ‘Blind drilling’ – drilling without fluid returns – is the most dangerous type of drilling.

Could you share examples of drilling technologies or techniques that have improved efficiency and safety?
We’ve shifted from traditional bits to PDC bits so we can drill harder formations. Traditional tools couldn’t handle directional drilling beyond 150°; newer technologies handle higher temperatures (200 °C and above). Cementing earlier couldn’t go beyond 150 °C; now we can go over 300 °C for more than 25 years. For casing we use carbon silicate, nickel, and chromium alloys.

“Every 10 °C of heat is a new layer of difficulty , but innovation always catches up.”

Global Industry Perspective

Which regions hold the most promising potential for geothermal development?
Africa – the Eastern Rift has more geothermal compared to the West Rift. South America follows (El Salvador, Ecuador) in the Ring of Fire. Indonesia and the Philippines (tectonic boundaries). Australia and New Zealand (Ring of Fire). Japan (tectonic plates). The USA (Alaska, Oregon), Turkey, and Eastern Europe also show potential.

How do differences in geology, policy, and regulation impact drilling success?
Many countries’ mining acts only focus on open/underground mines, while geothermal is deep. In Africa, deep minerals belong to the government. In the USA every state has its own mineral laws. In New Zealand it’s more standardized, and that model should be applied in Africa. Local communities must always be considered, especially when donors enforce frameworks.

“Regulations must catch up with depth, geothermal isn’t surface mining, it’s from the core of the Earth ”

What lessons can emerging geothermal markets learn from Iceland, the USA, or Kenya?
They should ensure regulations are properly structured. Reports must be made for future drilling and recommendations. Improve efficiency and keep safety paramount — in drilling, even on day one, lives can be lost.


Innovation & Future Outlook

With the rise of automation and digital technologies, what role do you see them playing in geothermal drilling?
In the past there was no monitoring. Today we have drilling sensors – weight on bit, pressure volumes, gas sensors. Data is gathered and shown in graphs; alarms sense pressure differences; H₂S calibration with AI is routinely tested weekly and automated.

How important is reducing drilling costs for global geothermal expansion?
In Africa it takes about USD 6 million to drill to 3,000 m. About 40% goes into drilling, 40% into well cost; typically you drill 3-4 wells with one used as injection. If you reduce one day of drilling time, you could save USD 1.5 million — that can fund another well and improve project efficiency.

What advice would you offer to young engineers aspiring to build careers in geothermal drilling?
Many come from mechanical, chemical or petroleum backgrounds. Keep your eyes and ears open. Learn from field engineers. Ask hard questions. Keep all notes — similar problems will crop up 20 years later. Geothermal is made up of 20 departments and they must all work together. Cross-train and build yourself.

“Keep your field notes , this events tend to repeat themselves ”

Closing

Sam’s global career and insights underscore that geothermal drilling is as much about human ingenuity, careful engineering, and constant vigilance as it is about raw heat and geology. At Alphaxioms, we believe these perspectives help push the frontier — equipping companies, consultants, and engineers to unlock the next wave of geothermal growth.


Related: Driving the UK Toward Net Zero: Chris Sladen on Geothermal’s Untapped Potential




Connect with us: LinkedIn

Comments

Popular Posts

Meta and XGS Energy Partner on 150 MW Geothermal Power Project in New Mexico

Meta and XGS Energy Partner on 150 MW Geothermal Power Project in New Mexico A Game-Changer for AI, Clean Energy, and the Future By Robert Buluma – Alphaxioms Energy Blog In a bold move that signals the future of energy and technology convergence, XGS Energy and Meta Platforms, Inc. have announced a groundbreaking agreement to develop 150 megawatts (MW) of next-generation geothermal energy in New Mexico. This partnership not only promises to reshape the state's energy landscape but also underscores the growing demand for sustainable, round-the-clock power to fuel the age of artificial intelligence (AI) and data-driven economies. Clean Power Without Water – XGS’s Unique Edge At the heart of this partnership lies XGS Energy’s proprietary solid-state geothermal technology. Unlike traditional geothermal systems that rely heavily on water and specific geological conditions, XGS’s innovation enables electricity production from hot, dry rock  with zero operating water use. This water-inde...

The Geothermal Boom Begins: New Investments, Bold Tech, and a 20× Outlook by 2050

Global Geothermal Market Heats Up: New Investment Plans Revealed for 2025 By: Robert Buluma The global geothermal energy sector is entering a transformative phase in 2025, driven by surging investments, accelerating technology adoption, and favorable policy shifts. As clean baseload capacity becomes more critical to the world’s energy transition, stakeholders are increasingly turning to geothermal power—not just for electricity generation, but also for industrial heat, green hydrogen, and direct-use applications. This shift could solidify geothermal as a cornerstone of sustainable energy infrastructure in the decades ahead. 1. A Market Poised for Steady Growth According to industry forecasts, the global geothermal energy market is on track for major expansion.   We  project the sector will grow from USD 56.0 billion in 2025 to USD 85.0 billion by 2035 , a compound annual growth rate (CAGR) of 4.2%. Business Research Insights forecasts a CAGR of 7.3% between 2025 and 20...

PGE’s Lumut Balai Unit 2: The 55 MW Geothermal Breakthrough Powering Indonesia’s Clean Energy Future

PGE’s Lumut Balai Unit 2: A 55 MW Geothermal Triumph Rewriting Indonesia’s Clean Energy Future By:  Robert Buluma Indonesia has once again staked its claim as a global geothermal heavyweight. With the successful operationalization of the Lumut Balai Unit 2 Geothermal Power Plant, PT Pertamina Geothermal Energy Tbk (PGE) has delivered a strategic blow in the global race toward clean baseload energy. More than just a 55 MW addition to the country’s energy mix, this project marks a bold step in Indonesia’s ambition to expand its geothermal capacity to 1 gigawatt within the next few years. In a world grappling with climate volatility, unstable energy prices, and growing demand for reliable renewable power, this achievement resonates far beyond Indonesia’s borders. It signals a shift — a declaration that geothermal energy is rapidly maturing, scaling, and proving itself as the backbone of modern clean-energy systems. A Milestone Project in a Region Rich With Geothermal Potential Lumut ...

Archi Indonesia and Ormat Launch 40 MW Geothermal Venture in North Sulawesi

Archi Indonesia and Ormat Form Powerful Geothermal Joint Venture: A 40 MW Vision That Could Redefine North Sulawesi’s Energy Future By: Robert Buluma In a decisive move that signals Indonesia’s accelerating transition toward renewable energy, Archi Indonesia (ARCI ) —one of the country’s largest pure-play gold mining companies—has joined forces with global geothermal powerhouse Ormat Technologies . Their new joint venture, PT Toka Tindung Geothermal (TTG) , aims to deliver a 40-megawatt geothermal power plant within ARCI’s mining concession in North Sulawesi. The partnership is more than a business deal. It represents a strategic realignment in Indonesia’s energy landscape, a recalibration of ARCI’s identity, and a major step forward for geothermal development in Southeast Asia. Below is a deep, comprehensive look at what this collaboration means, what it could unlock, and why it deserves the attention of every energy observer today. A Bold Partnership: ARCI Holds 5%, Ormat Lead...

Biliran II Geothermal Project: The Philippines’ Next 200 MW Renewable Baseload Power Breakthrough

Biliran II: The Philippines' Next 200 MW Geothermal Powerhouse Poised to Transform Data Centers and Industrial Energy Security By:  Robert Buluma In a world racing toward stable and decarbonized energy systems, geothermal power continues to stand out as one of the most reliable and future-proof renewable energy solutions. The Philippines—already home to the world’s third-largest geothermal capacity—is once again making headlines with a transformative new development: the ~200 MW Biliran II Geothermal Project , now advancing toward its final resource confirmation. This landmark project represents a bold new era of geothermal development in Southeast Asia, tapping into renewable baseload power to supply industries that can no longer afford instability, unpredictable pricing, or carbon-heavy electricity. With the rising energy demands of data centers, manufacturing hubs, and digital infrastructure, Biliran II could become a strategic cornerstone in securing long-term energy resilienc...

OMV GeoTherm NL BV Takes Over Major Parts of Shell’s Dutch Geothermal Portfolio

OMV GeoTherm NL BV Takes Over Major Segments of Shell Geothermie’s Dutch Geothermal Portfolio By:  Robert Buluma In a significant development for the Dutch geothermal sector, a new and highly experienced international player has stepped into the arena. OMV Green Energy GmbH—operating in the Netherlands under the name OMV GeoTherm NL BV —has officially taken over a large portion of Shell Geothermie’s geothermal portfolio . This transition marks an important moment for the growth, diversification, and continued professionalization of geothermal energy development in the Netherlands. With this move, OMV becomes a central actor in several high-potential geothermal projects across Rotterdam, Capelle , and Rijnland , reinforcing its long-term commitment to supporting renewable energy systems across Europe. A New Powerhouse in Dutch Geothermal Development OMV, headquartered in Austria, is internationally recognized for its extensive knowledge of subsurface geology, drilling techno...

Scotland Breaks Ground: NHS Grampian and TownRock Energy Launch First Deep Geothermal Heating Plant

Scotland’s First Deep Geothermal Heating Plant: NHS Grampian and TownRock Energy Explore Renewable Future By:  Robert Buluma Scotland is taking a significant step toward renewable energy with the potential construction of its first deep geothermal heating plant in Aberdeen. A recent Scottish Government-funded feasibility study, conducted by TownRock Energy in partnership with NHS Grampian , has revealed the immense potential of harnessing geothermal energy beneath the city. This groundbreaking initiative could transform heating systems, reduce carbon emissions, and support the local community in tackling rising energy costs. Feasibility Study Highlights Geothermal Potential The desk-based study, completed by TownRock Energy, examined three different geothermal technologies for the Foresterhill Health Campus . The study concluded that an Enhanced Geothermal System (EGS) , reaching depths of 3.5km to 5km, would provide the most efficient and reliable source of renewable heat. ...

NZ and Iceland Forge Strategic Geothermal Partnership at COP30

New Zealand and Iceland Forge a Historic Partnership to Advance Superhot Geothermal Energy By: Robert Buluma In a defining moment for global clean energy innovation, New Zealand and Iceland have signed a landmark agreement to deepen cooperation on geothermal energy development. The arrangement—formalized at COP30 in Belém, Brazil—positions both nations at the forefront of a new era of renewable energy technology, especially in the emerging field of superhot and supercritical geothermal systems. This partnership is more than a diplomatic gesture; it represents a powerful fusion of scientific expertise, drilling innovation, and shared national ambition. For countries looking to harness geothermal as a reliable baseload solution, the New Zealand–Iceland alliance sets a new standard for international energy collaboration. A Partnership Rooted in Decades of Geothermal Excellence New Zealand and Iceland are globally recognized for their geothermal resources and world-leading technical expert...

GeoHardt Unveils Mannheim Site for First Geothermal Heating Plant to Boost Renewable Energy

GeoHardt GmbH announces Mannheim site for its first geothermal heating plant in Rheinau, supporting MVV’s goal of 100% renewable district heating and driving the city’s energy transition. By: Robert Buluma GeoHardt GmbH has officially revealed its first geothermal heating plant site in Mannheim, marking a major milestone for renewable energy in the region. The selected location, in the southeastern part of Mannheim’s Rheinau district, will serve as the foundation for what could become a series of up to three geothermal heating plants planned by the company. This initiative aligns with MVV’s ambitious goal of transitioning district heating to 100% renewable energy, positioning Mannheim as a leader in Germany’s energy transition. Strategic Location: Franzosenhäusel in Mannheim The chosen site, known locally as Franzosenhäusel, is situated between the Bundesstraße B36 and the A6 motorway, south of Hallenbuckel Street. Covering an area of approximately 28,000 square meters, the site will...

Nevada’s Geothermal Lease Sale Breaks Records With Bids Surpassing $400 per Acre

Nevada’s Geothermal Lease Sale Shatters Records: What It Means for the Future of Clean Energy By: Robert Buluma The geothermal industry is entering an exciting new chapter—one defined by bold investments, rising land values, and rapidly advancing technology. The latest lease sale in Nevada is a perfect example. According to industry sources, bids are already surpassing previous records , with some parcels hitting over $400 per acre . This remarkable surge comes just months after earlier records were set, signaling a powerful and accelerating trend. As geothermal development continues to pick up momentum across the western United States, Nevada stands out as one of the most attractive hotspots. The state’s rich geothermal resources, combined with strong policy support and advancements in subsurface imaging, drilling, and reservoir engineering, are creating the perfect environment for developers and investors alike. A Record-Breaking Sale: What Happened? The Bureau of Land Management...