Skip to main content

Driving the UK Toward Net Zero: Chris Sladen on Geothermal’s Untapped Potential

Alphaxioms, we talked to Chris Sladen about his involvement in geothermal both in the UK, and globally



Chris, please begin by explaining a little about yourself, and why you have a passion for geothermal?


I have spent over 45 years involved in energy. Following undergraduate studies in geology at Southampton University, and a PhD in sedimentology at Reading University, I joined the energy sector in Aberdeen in 1980. It was a fascinating era when it seemed like at least one giant oil & gas field was discovered offshore every month; the wealth creation for the UK was gigantic. I got to see so much geology and rocks - my true passion. I moved to China in late 1983; not today’s China, this was over 40 years ago, a country closed for decades and embarking on an open-door policy, in part to bring both investment and technology.

I became very interested in energy trends, energy politics, and new geography created by changing politics leading to opportunities for energy investment. Subsequently I lived in locations such as Mongolia, Vietnam, east Siberia, and Mexico, actively involved in energy developments, product trading and retail sales working in total on over 40 countries. I have always been an advocate for better energy solutions, ideally lower carbon, than ones we have used before. I believe geothermal is under-explored, under-utilised, and under-invested.


During Covid times, I was a co-founder of the Geothermal Energy Advancement Association (GEAA) and Chair of the Founding Members. GEAA soon became a member of the Global Geothermal Alliance . Recently at GEAA we co-organised a very successful conference on 'Geothermal in the UK - what's next?'. This was the first attempt to directly address commercialisation in the UK, and what is needed. I have included various themes from this event into this Q&A. We seek to advocate greater use of geothermal resources and collaborate with like-minded entities. The need for everyone to come together and create a louder voice to promote geothermal was very clear. I am committed to make that happen.

I am currently a non-resident fellow at the Institute of the Americas; the Institute is at the forefront of thought leadership and analysis in energy, and a strong supporter of geothermal energy. The Institute creates a refreshingly positive atmosphere and approach to doings things better. I publish extensively on energy, both research articles and op-eds; my current series ‘Energy Unwrapped!’ is published to a global audience via the UK, USA, Singapore, and Mexico. 
 
What is the significance of World Geothermal Energy Day?
 
This is a global celebration of geothermal, held every October 17th. The founders of this event, Jim Scherrer and Steve Krug, deserve enormous credit for creating the concept and fostering remarkable growth in activities. I am a UK Ambassador for World Geothermal Energy Day. Celebrations involve institutions, companies, individuals, students, investors, technology start-ups, universities, school kids to name a few. It is for everyone interested in geothermal, and its fun too! The celebrations take the form of a ‘rolling wave’ around the world as people post articles, hold seminars, and put pictures on social media. Now, I think it reaches over 1 million people; whilst there is no way of knowing the exact number, it is wonderful to see the global participation grow in just a few years.

 
In the UK, GEAA recently introduced the concept of a UK Geothermal Day, and this is planned for June 12th each year. I am pleased that the UK National Geothermal Centre and GEAA are collaborating to make this a success. Hopefully, everyone involved in UK geothermal will actively participate, and grow nationwide interest in geothermal, celebrating this clean source for heat, power, and critical minerals.

What is the UK geothermal resource base?

Geothermal is sustainable by any human measure with 100+ years of resources. Unlike other energy resources and minerals, it is everywhere. It is proven to have negligible environmental impact. Surface facilities are typically small and unobtrusive, and in many situations, water circulated to extract heat can be contained within a closed system. Emissions are minimal. Simple messaging is needed to explain the resource opportunity - ‘low carbon heat and power exist under all our feet; we just need to use it!’


The UK has a small number of proven projects that produce low, medium, and high-grade heat. These demonstrate commercial viability. For example, projects in the counties of Cornwall, Durham, Northumberland, Yorkshire, Hampshire, and Gloucester already show how geothermal can decarbonise heating. Very soon, Cornwall is expected to add the first UK geothermal electric power production at United Downs. The challenge countrywide is to scale up activities and unleash technology, at pace.

Multiple technology solutions can be used to combat the UK’s varied geology. Technology innovation includes, for example, the repurposing of existing oil & gas wells, micro-Organic Rankin Cycle technology, the integration of deep & shallow geothermal resources with combinations of heat pumps, downhole installations, a new generation of smart heat networks, and the use of low-grade heat in thousands of flooded and abandoned coal mines. A significant improvement in drilling technology can reduce capital expenditure. AI can surely help.

How do you see geothermal contributing to the UK Net Zero aspirations?

Commercial geothermal heat and power in the UK can have a leading role in energy security and decarbonisation. By 2050, geothermal is estimated capable of supplying 10 GW of predicted heating demand, 1.5 GW of anticipated electricity demand, deliver a reduction of 10 Mt of CO2 emissions, whilst adding 50,000 direct jobs and 125,000 indirect jobs. Geothermal reinforces the UK aspiration for decarbonised heat and power by contributing a reliable resource into a Net Zero energy system that has increasing variety, resilience, and energy independence.


A rapid build-out of geothermal can offset the loss of jobs from a fast-downsizing oil & gas industry. Geothermal could create a pathway for >30,000 oil and gas professionals as it relies, in part, on broadly similar skills to drill wells and manage fluids. If UK geothermal develops quickly, this can ensure highly skilled and trained drilling and engineering staff are not lost forever.
 
As energy security and carbon reduction become critical priorities for governments and businesses alike, geothermal offers a scalable, reliable, and long-term solution. Geothermal energy is a significantly underutilized resource with substantial potential to contribute to both heat and power generation. Technology now allows it to be deployed anywhere as it becomes scalable for both shallow, medium, and deep projects, making it ideal for commercial buildings, industrial processes, and district energy systems seeking to lower emissions and reduce operating costs. Opportunities abound to decarbonise large buildings such as NHS hospitals, universities & large schools, new data centres, airports, prisons, warehousing and opportunities such as large-scale greenhouse horticulture. I expect a steady flow of project news in coming years as investment ramps up.
  
How can the UK attract more investment into geothermal compared to other renewables like wind and solar?

Widespread political support would kick-start geothermal in the UK. The challenge to communicate geothermal is enormous. We need all political parties, and all councils to solidly support and advocate geothermal projects both for energy security, creation of a diverse energy mix, and as a 24/7/365 - always available - sustainable, renewable cleaner heat & power resource, ideal for decarbonisation. It is available everywhere onshore. I don’t see geothermal as in competition with wind and solar, to me they are complementary, together with storage, creating resilience.  

The biggest challenge is bringing geothermal projects to market, the commercialisation. It is about getting projects off the drawing board, and financed, be it projects using low-grade heat, medium-grade heat, or high-grade heat, for heating, cooling & power. It is about understanding the resources & markets, how they can best be developed, finding the right technology choices, and learning from others throughout the energy value chain.
 
More national and local government support is needed in terms of policy, regulation, and fostering closer collaboration between stakeholders. In the European Union, recent support has provided a huge boost and confidence in accelerating geothermal investment whereas the UK geothermal sector is perceived to have much less Government support, especially compared to other low-carbon sources, particularly wind, solar, tidal, hydro and nuclear. The lack of confidence in national policy direction and weak support at local government level is stymieing growth. 

As an emerging industry, we need to capture public imagination and become a government imperative. At the same time, we should not oversell geothermal and create unfulfilled expectations. The geology of the UK is highly variable - both laterally & vertically - which means that a large variety of technology and engineering solutions may be required. Each location may have very different geothermal properties, and market requirements; this implies a complex picture for commercial viability.
 
Where do you think the focus of geothermal will be in the UK, looking ahead to 2040? 

Heat networks fed by geothermal resources are an enormous opportunity. Heating and cooling accounts for 35-40% of total UK carbon emissions with the burning of fossil fuels accounting for most of these emissions. Heat networks offer low-hanging fruit to decarbonise, using shallow and medium-depth heat. UK heat networks are proven - with companies designing, building, financing and operating district heating, hot water, and cooling schemes - there are currently ~500,000 heat network customers. However, these cover only 2-3% of total heat demand, which is very low compared to several European countries e.g. Denmark 60-65% of households, and Sweden 50-55%. 

In addition to heat, there are other important opportunities, such as geothermal for power generation, and the processing of geothermal waters for critical minerals. Most of this activity is currently focussed on the geology of SW England and has shown positive results in recent years. Even so, vast areas of the UK remain unexplored, or under-explored, and undeveloped. We need a change of mindset.
 
How will projects be funded?

Financing and funding will be critical - public financing can accelerate project delivery. The growth of UK geothermal through Government financial incentives, together with fiscal collaboration and innovation can deliver thousands of new low-carbon heat and power projects. Previous geothermal projects have had to deal with high upfront drilling costs which can exceed 40% of total costs. Long lead times and geological risks have made financing difficult. Access to geological well and seismic data is crucial for development design and derisking; data needs to be more readily available and accessible. With greater numbers of UK projects, drilling costs will decline through continuous improvement and innovation in fast drilling technologies.

Globally, early-stage public financial support has been critical to attract private capital; this often includes tax incentives to scale-up. A blended approach incorporating public finance to de-risk private investment would accelerate UK investment, including grants for exploration, concession loans and guarantees. Venture capital and project finance needs support of a heating offtake agreement, or power purchase agreement (PPA) ideally with a Contract for Difference (CfD) mechanism.


A clear, simple regulatory framework in the UK would improve investor confidence. The current regulatory framework is inadequate for geothermal, lacking specific licensing and management systems. At the current time, there is no consistent nationwide legislation. Light-touch pragmatic regulation, combined with bankable heat and power purchase agreements would be a massive boost for investor confidence, and the insurance sector.

Having an additional income stream from geothermal projects can only help the bankability. Lithium in geothermal fluids is perhaps best known but there are sometimes also base metals and rare earth elements. Here again, actions on simple regulations, policy and incentives are now needed.

What is the progress of geothermal in Europe versus the UK?

Europe’s approach is underpinned by strong EU government support and legislation. The European Commission supports geothermal energy as part of efforts to achieve renewable energy targets and is included in the European Green Deal. The European Economic and Social Committee has called for a European strategy and action plan, highlighting geothermal’s role in a green transition, whilst the Working Group actively promotes technologies. The EU overall is actively investing in geothermal to contribute to its climate goals and this is also seen in its national energy climate plans.

EU legislation includes the Renewable Energy Directive, Energy Efficiency Directive, Net-Zero Industry Act, and Critical Raw Materials Act. These introduce rules that can benefit the entire geothermal sector. The EU funds research projects through the Horizon 2020 programme, focussing on cost reductions and improved performance. Several countries have national roadmaps and ambitious targets to make investment in geothermal projects more attractive.

The services sector and supply chains are ready to meet a surge in UK geothermal projects. The supply chain currently serves projects in the UK and is scaled to meet the next few years of demand. Many UK-based suppliers are active in Europe while waiting for UK geothermal to take off. UK demand is much lower compared to Europe - Germany, Italy, Netherlands, Denmark, Croatia, Hungary, Portugal, France, Austria and Sweden are all active in geothermal, to name a few. And of course, Iceland, too.

Direct Lithium Extraction (DLE) from hot oilfield brines in Europe and the UK is an opportunity analogous to what is happening in the Smackover Trend in the USA. In Europe, Germany is most advanced in DLE; this can also be an exciting frontier for oilfield brines and aquifers in France and England.

Geothermal is poised globally to assist large data centres and the AI-driven surge in power demand and heating/cooling - the UK and Europe can be a big beneficiary if it acts now. Recent PPA deals involve Google in the USA, whilst Meta, Microsoft, and Amazon are each well advanced. Their search for a clean energy mix for energy hungry operations has identified geothermal an ideal contributor for heating, cooling, and baseload power for data centres, whilst meeting clean energy procurement targets.

How do you see the role of Academia in promoting geothermal? 

Academia can do much to bring the geothermal opportunity to all - young-old, rural-urban, south-north, rich-poor in the UK. Raising public awareness and engaging local communities is essential for successful geothermal projects. Social understanding of geothermal energy opportunities is still extremely low, often non-existent. Education about geothermal is needed at all levels. For example, by a small investment in developing video gaming technologies such as Minecraft, geothermal could reach millions of younger students and children.

Some 20 UK universities are now researching or using geothermal on their estates, and I have visited many sites. Support and involvement are growing; however increased funding is desirable both for research and to develop much-needed undergraduate level geothermal courses. Funding is critical to invest in skilling, and re-skilling young workers for the future. Increased support from the UK’s University funding councils is desirable, and I believe support can come from alumni too. 



Connect with us: LinkedIn

Comments

Popular posts from this blog

Amsterdam Strikes Geothermal Gold: Hot, Thick, Permeable Reservoir Confirmed

Breakthrough Beneath the Beach: Amsterdam Region Hits Geothermal Paydirt at Strandeiland By: Robert Buluma The Netherlands just took a giant leap toward fossil-free heating. On the artificial island of Strandeiland (part of Amsterdam’s fast-growing IJburg district), the SCAN exploration well has officially confirmed what the geothermal community has been hoping for: a thick, hot, and , most importantly permeable reservoir in the Slochteren Formation. Key numbers that matter:   Reservoir thickness: 152 meters   Bottom-hole temperature: 66 °C   Permeability: confirmed via successful production and injection tests   That’s not screaming-hot by Icelandic standards, but for direct-use district heating in one of Europe’s densest urban areas, 66 °C is more than enough to supply thousands of homes with clean, baseload heat – forever. Why This Well Changes Everything for the Netherlands The Dutch government launched the SCAN program (Seismic Campaign Nethe...

Geothermal-Powered Greenhouses: Qingyun County's Leap Toward Sustainable, Year-Round Agriculture in Shandong

Harnessing Geothermal Energy to Power Modern Agriculture: How Qingyun County Is Redefining Sustainable Food Production in Shandong By:  Robert Bulum a As winter tightens its grip across northern China, most agricultural regions brace for declining productivity, rising energy costs, and increased environmental pressure. Yet in Qingyun County, located in China’s eastern Shandong Province, a different story is unfolding,one where geothermal energy is quietly transforming agriculture into a resilient, low-carbon, high-yield enterprise. At the heart of this transformation lies the Shandong Shuifa Aerospace Modern Agriculture Industrial Park, where geothermal energy has become a critical enabler of year-round food production, economic efficiency, and environmental sustainability. A Warm Oasis in the Depth of Winter Shortly after the Minor Snow solar term, temperatures outside the greenhouses in Qingyun County drop sharply. Inside the intelligent greenhouse complex, however, conditions re...

Zanskar’s Big Blind: First Blind Geothermal Discovery in 30 Years

Big Blind: The Geothermal Discovery That Changes Everything By: Robert Buluma Utah startup  Zanskar Geothermal quietly dropped one of the most important announcements in American energy in decades. They discovered and confirmed “Big Blind” ,the first completely blind, commercial-grade geothermal system found in the United States in over thirty years. Let that sink in. No hot springs.   No fumaroles.   No steaming ground.   No prior wells.   Zero surface expression whatsoever. Just desert, sagebrush, and – 7,000 feet below,  a reservoir hot enough and permeable enough to support gigawatt-scale power production. This isn’t incremental progress. This is a paradigm breaker. Why “Blind” Discoveries Matter So Much For the last 40 years, geothermal development in the U.S. has been geographically handcuffed. You could only build plants where nature advertised the resource on the surface – think Yellowstone, The Geysers, or Imperial Valley. Ever...

Germany Unveils Groundbreaking KfW–Munich Re Program to De-Risk Deep Geothermal Heat Projects

Germany Launches Landmark Financing Program to Accelerate Deep Geothermal Heat Projects By: Robert Buluma Germany has taken a decisive step toward securing a climate-neutral heat future. On December 18, 2025, the German Federal Ministry for Economic Affairs and Energy (BMWK), KfW Development Bank , and global reinsurer Munich Re officially launched a groundbreaking funding program designed to unlock large-scale investments in deep geothermal energy for municipal and industrial heat supply. The new initiative, known as the KfW Geothermal Promotional Loan (KfW-Förderkredit Geothermie), directly addresses one of the most persistent bottlenecks in geothermal development: the high financial risk associated with drilling deep geothermal wells. By combining low-interest loans with comprehensive risk coverage, the program is set to significantly accelerate geothermal deployment across Germany. Why Deep Geothermal Matters for Germany’s Heat Transition While Germany has made remarkable progre...

Fervo Energy To Partner With Turboden In 400 MW Utah Geothermal Project

Unleashing the Power of Earth:  Turboden and  Fervo Energy Partner to Revolutionize Geothermal Energy By: Robert Buluma In the heart of the rugged landscapes of southwest Utah, a groundbreaking collaboration is underway to harness the Earth's natural heat and propel the world towards a greener, more sustainable future. Turboden , a trailblazer in Organic Rankine Cycle (ORC) systems, has joined forces with Fervo Energy , a pioneer in enhanced geothermal systems (EGS), to embark on an ambitious journey towards redefining geothermal energy production. The Cape Station project stands as a testament to this alliance, marking Fervo Energy largest commercial endeavor in the geothermal energy sector to date. Positioned to become a beacon of innovation, Cape Station aims to revolutionize the way we harness energy from beneath the Earth's surface, with an anticipated total project capacity of approximately 400 MW. This endeavor not only symbolizes a transformative leap towards carbon-...

Geothermal Projects In Africa, Countries Overview

 Geothermal Projects in Africa: Country-wise Overview By : Robert Buluma Africa is increasingly turning to geothermal energy as a sustainable solution to meet its growing electricity demands. With abundant geothermal resources spread across the continent, several countries have embarked on ambitious projects to harness this clean and renewable energy source. Let's delve into the geothermal projects in various African countries, highlighting key players and prospects. Algeria Algeria is exploring its geothermal potential, particularly in the northern regions. Although in the early stages, initiatives are underway to assess feasibility and potential locations for geothermal power plants.  Burundi Burundi has shown interest in developing its geothermal resources, primarily in the northwest region near Lake Tanganyika. The government is actively seeking partnerships with international firms to kickstart exploration and development efforts. Comoros The Comoros Islands are situated ...

A Quiet Revolution Underground: Prenzlau’s Geothermal Leap Toward a Fully Renewable Heat Future

Prenzlau’s Geothermal Breakthrough: A Decisive Step Toward a Fully Renewable Heat Future By: Robert Buluma The city of Prenzlau, located in northeastern Germany, has reached a major milestone in its transition toward sustainable energy. In December 2025, Stadtwerke Prenzlau announced a decisive breakthrough in its geothermal project after successfully encountering geothermal water at a depth of 983 meters. This discovery represents a critical step forward for the city’s ambition to fully decarbonize its heat supply and positions Prenzlau as a leading example of how medium-sized towns can harness geothermal energy for district heating. The geothermal water discovered during drilling operations is estimated to be around 200 million years old and is contained within a saline sandstone formation deep underground. With a temperature of approximately 44°C and a planned production rate of 130 cubic meters per hour, the resource offers a reliable and continuous source of renewable heat. A test...

Unlocking America’s Hidden Power: Congressman Fulcher’s Bold Push for Geothermal Energy and Lower Energy Costs

Congressman Russ Fulcher Introduces Landmark Bill to Unlock Geothermal Energy and Lower Costs Across the U.S. By:  Robert Buluma WASHINGTON, D.C., November 25, 2025 – U.S. Congressman Russ Fulcher (Idaho-01) has reintroduced a pivotal piece of legislation designed to accelerate geothermal energy development in the United States. The bill, H.R. 5576 – the Enhancing Geothermal Production on Federal Lands Act, aims to streamline the permitting and exploration process for geothermal projects, placing geothermal energy on par with oil and gas exploration on public lands. As energy demand in the United States surges, driven by rapid technological advancements, including artificial intelligence, electric vehicles, and high-capacity data centers, the need for reliable and clean baseload energy has never been more critical. Geothermal energy, a stable and renewable resource, offers a significant solution, yet its development has long been hampered by federal regulations and lengthy permitti...

Hyundai Builds World’s Largest Single-Unit Geothermal Power Plant

Hyundai E&C Breaks Record: Building the World’s Largest Single-Unit Geothermal Power Plant in Indonesia By:  Robert Buluma In a remarkable feat of engineering, Hyundai Engineering & Construction ( Hyundai E&C) has just completed the Sarulla Geothermal Power Plant (Sarulla GPP) in North Sumatra, Indonesia now officially recognized as the world’s largest single-unit geothermal power plant with a capacity of 330 MW. This milestone not only showcases Korean engineering excellence on the global stage but also marks a significant step forward for clean, reliable renewable energy in Southeast Asia. A Giant Leap for Geothermal Energy Located in the Sarulla region of North Sumatra, the plant consists of three units that together deliver 330 megawatts of clean electricity enough to power approximately 2.1 million Indonesian households. What makes Sarulla truly special is its single-unit design. While many geothermal projects around the world are built in smaller, modular phases...

American Critical Resources and Plum Acquisition Corp. IV Sign LOI for SPAC Merger to Advance U.S. Geothermal Lithium Project

Revolutionizing Energy: The Synergy of Geothermal Power and Lithium Extraction at Hell's Kitchen Posted by  Robert Buluma  on December 20, 2025 In an era where the world is racing toward sustainable energy solutions, the intersection of geothermal power and lithium production is emerging as a game-changer. As electric vehicles (EVs), renewable energy storage, and advanced technologies demand ever-increasing supplies of critical minerals, innovative projects are stepping up to meet the challenge. One such groundbreaking initiative is the Hell's Kitchen project by American Critical Resources (ACR), a subsidiary of Controlled Thermal Resources Holdings Inc. (CTR) . This California-based endeavor not only harnesses the Earth's natural heat for clean electricity but also extracts lithium a vital component in batteries ,directly from geothermal brines. With a recent announcement of a proposed business combination with Plum Acquisition Corp. IV (Nasdaq: PLMK), a special purpose ac...