Skip to main content

Mastering the Subsurface: Insights from a Geothermal Reservoir Engineer

Geothermal energy is often called the “quiet backbone” of the clean energy transition. To understand the science, challenges, and innovations driving this sector, we spoke with a seasoned geothermal reservoir engineer with experience spanning the Andes, Nevada, Utah, and volcanic fields worldwide. Here’s what they shared.

1. What sparked your passion for geothermal reservoir engineering, and did you ever imagine yourself working in some of the world’s most challenging geothermal fields?

My passion was sparked during my early career in the petroleum industry, specifically in reservoirs. I was fascinated by the subsurface—how fluids move, how heat and pressure interact but it wasn’t until I worked on projects in Peru that I realized geothermal offered the chance to apply my skills to clean energy. I never imagined I would later work on Enhanced Geothermal Systems (EGS) projects in Nevada and Utah or Andean volcanic fields, where the geology is as unforgiving as it is exciting. Those challenges became a source of motivation rather than a source of fear.

2. Looking back, which project pushed you to your limits and what did it teach you about yourself and the industry?


A project in Nevada, where we modeled a reservoir under extreme conditions, truly tested me. We had to integrate geomechanics, stimulation modeling, and uncertain thermal recovery forecasts. It taught me that adaptability is as important as technical expertise. The industry is full of unknowns, and resilience is built by embracing them, not resisting them.

3. If you could go back in time, what advice would you give your younger self starting in this field?

I’d say: “Don’t fear complexity. Chase it.” The more complex the reservoir, the more you’ll learn. And, importantly, I would tell myself to build strong collaborations early—because geothermal is never a one-discipline job.

4. Can you share a moment when reservoir modeling or simulation completely changed the direction of a project?


Yes, during a simulation of a fractured geothermal system, the initial plan was to stimulate multiple wells aggressively. The model, however, revealed rapid thermal breakthrough if we followed that strategy. By re-optimizing injection and production spacing, we extended project life by years. That one model saved millions and demonstrated that simulation is not just academic it is a survival tool.

5. Have you ever faced a situation where enhancing permeability didn’t go as planned? How did you overcome it?


Absolutely. In one stimulation test, induced fractures propagated away from the desired reservoir zone, causing poor injectivity gains. Instead of repeating the operation, we integrated microseismic monitoring with adaptive modeling to redesign the stimulation in real time. The next stage succeeded, teaching me that feedback loops between field data and modeling are essential.

6. What’s the one reservoir challenge that keeps you up at night, even after years of experience?
Sustainability. We can always produce heat, but doing so without depleting the reservoir or causing induced seismicity is the tightrope we walk. Balancing aggressive targets with long-term reservoir health is an art as much as it is science.

7. In your experience, what is the most misunderstood aspect of geothermal reservoir management by outsiders?
That geothermal is “free heat forever.” Many people underestimate the complexity of maintaining productivity and sustainability. Reservoirs are dynamic, and if poorly managed, you can lose capacity quickly. It’s not just drilling a hole into hot rock.


8. How do you decide whether a geothermal site is worth the risk and have you ever been proven wrong?


We weigh geoscientific data, stress regimes, reservoir modeling, and economics together. I was once overly optimistic about a site in the Andes where surface heat flow data looked ideal. But drilling revealed a tight formation with poor permeability. It reminded me that nature always humbles engineers.

9. Can you share a story where data-driven decisions turned a struggling project into a success?

During my work on an Enhanced Geothermal System (EGS) project in Nevada, the team initially struggled because early stimulation results didn’t achieve the expected fracture connectivity. This meant we weren’t seeing the necessary flow rates to make the project viable. Instead of continuing with trial-and-error pumping strategies, we shifted toward a data-driven approach.

We integrated microseismic monitoring, well-test data, and geomechanical modeling to better understand the fracture network evolution. Using this data, I helped calibrate coupled reservoir–fracture models that revealed why stimulation fluid was not effectively propagating into the target zones. The analysis showed stress anisotropy was steering fractures away from our preferred direction.
Based on these insights, we adjusted the injection sequence, pressure schedules, and selected zones with a higher probability of fracture reactivation. As a result, we improved fracture connectivity, increased injectivity, and achieved sustainable flow rates that transformed the project from uncertain to technically successful.

10. What are the biggest obstacles technical, political, or operational that the geothermal industry refuses to talk about openly?

Political instability and inconsistent energy policy. Technically, we discuss challenges freely, but projects often fail due to sudden regulatory changes, permitting delays, or lack of financing frameworks. It’s the silent elephant in the room.

11. How do you balance the pressure for high energy output with the long-term sustainability of a reservoir?

By always planning for 20–30 years, not 2–3. It requires convincing stakeholders that moderate, steady production is better than chasing early peaks. Simulation helps us demonstrate the economic value of patience.

12. Supercritical geothermal resources are often called “the holy grail” of clean energy. How close are we really to unlocking their potential?

We’re closer than people think pilot wells in Iceland and Japan are already proving concepts but engineering materials, drilling technologies, and induced seismicity control are still hurdles. I believe within the next decade we’ll see the first commercial supercritical project.

13. Which emerging technology AI, digital twins, or advanced sensors do you think will revolutionize reservoir engineering, and why?

Digital twins integrated with real-time sensing will be the game changer. AI is powerful, but without live feedback, it risks being abstract. Digital twins will let us simulate and adjust operations on the fly, closing the gap between modeling and reality.

14. In your view, what is geothermal’s role in the next decade of the global energy transition?

Geothermal will be the quiet backbone less flashy than solar or wind, but crucial for baseload power and grid stability. As hydrogen and storage grow, geothermal will complement them, ensuring reliability.

15. If you had unlimited funding and freedom, what geothermal innovation would you pursue tomorrow?

A fully integrated fiber-optic sensing and AI-driven digital twin for EGS reservoirs. Real-time reservoir visibility would transform how we design and manage these systems.

16. Tell us about the most unexpected problem you’ve faced in a geothermal field and the creative solution you came up with.

In one project, scaling from silica precipitation clogged a well faster than anticipated. Instead of just chemical treatment, we designed a hybrid mechanical-chemical solution with pulsed injection cycles. It reduced downtime dramatically.

17. Collaboration can be tricky. Can you describe a time when you had to convince geologists, engineers, and operators to see your perspective on a project?

In a fractured reservoir project, geologists insisted that fractures connected to a nearby fault were beneficial. My simulation indicated a high risk of rapid pressure decline.

18. For aspiring geothermal engineers, what bold advice would you give something they won’t hear in textbooks?
Don’t just learn geothermal learn petroleum, mining, and even policy. The best geothermal engineers are multidisciplinary. And never forget: the reservoir is alive; treat it with respect. 



Connect With Us:LinkedInX


Comments

Popular posts

Meta and XGS Energy Partner on 150 MW Geothermal Power Project in New Mexico

Meta and XGS Energy Partner on 150 MW Geothermal Power Project in New Mexico A Game-Changer for AI, Clean Energy, and the Future By Robert Buluma – Alphaxioms Energy Blog In a bold move that signals the future of energy and technology convergence, XGS Energy and Meta Platforms, Inc. have announced a groundbreaking agreement to develop 150 megawatts (MW) of next-generation geothermal energy in New Mexico. This partnership not only promises to reshape the state's energy landscape but also underscores the growing demand for sustainable, round-the-clock power to fuel the age of artificial intelligence (AI) and data-driven economies. Clean Power Without Water – XGS’s Unique Edge At the heart of this partnership lies XGS Energy’s proprietary solid-state geothermal technology. Unlike traditional geothermal systems that rely heavily on water and specific geological conditions, XGS’s innovation enables electricity production from hot, dry rock  with zero operating water use. This water-inde...

EAPOSYS and Halliburton Unite to Supercharge the Future of Advanced Geothermal Systems

EAPOSYS  Partners with  Halliburton to Accelerate the Deployment of Advanced Geothermal Systems By:  Robert Buluma Biel/Bienne, Switzerland – October 10th, 2025  The race toward a sustainable energy future just got hotter. EAPOSYS SA, a Swiss geothermal innovation company, has joined forces with Halliburton (NYSE: HAL) to fast-track the deployment of its groundbreaking Advanced Geothermal Systems (AGS) . Under the newly signed agreement, Halliburton will conduct a subsurface feasibility study to evaluate and optimize the scalability of EAPOSYS’s patented closed-loop geothermal architecture. This collaboration will refine well designs, assess stratigraphic conditions, and minimize drilling risks  paving the way for the industrial-scale rollout of clean, predictable geothermal energy . “EAPOSYS SA has developed an innovative, patented, closed-loop architecture to deploy AGS anywhere in the world,” said Naomi Vouillamoz , CEO and co-founder of EAPOSYS. “AGS ...

Košice Ignites Its Geothermal Future: A 30-Year Dream Becomes Reality”

Košice Turns Up the Heat: Geothermal Energy to Warm the City After 30 Years in Waiting By: Robert Buluma After three decades of anticipation, the city of Košice, Slovakia, is finally set to tap into one of the Earth’s cleanest and most sustainable energy sources geothermal heat. On Wednesday, drilling begins on the long-awaited project “Utilization of Geothermal Energy in the Košice Basin”, marking a major leap toward energy independence and carbon neutrality for Slovakia’s eastern metropolis. From the site of Svinica–Ďurkov, a new deep geothermal well will be drilled, expected to reach a temperature of 135°C and a flow rate of 55 liters per second. Two reinjection wells each plunging roughly 3,700 meters deep  will accompany the main production well, ensuring a closed-loop system that reuses and reheats the geothermal water beneath the Earth’s surface. The third and final well is expected to be completed by mid-2026. Turning Vision into Reality The geothermal heating project is be...

Driving the UK Toward Net Zero: Chris Sladen on Geothermal’s Untapped Potential

Alphaxioms, we talked to Chris Sladen about his involvement in geothermal both in the UK, and globally By:  Robert Buluma Chris, please begin by explaining a little about yourself, and why you have a passion for geothermal? I have spent over 45 years involved in energy. Following undergraduate studies in geology at Southampton University, and a PhD in sedimentology at Reading University, I joined the energy sector in Aberdeen in 1980. It was a fascinating era when it seemed like at least one giant oil & gas field was discovered offshore every month; the wealth creation for the UK was gigantic. I got to see so much geology and rocks - my true passion. I moved to China in late 1983; not today’s China, this was over 40 years ago, a country closed for decades and embarking on an open-door policy, in part to bring both investment and technology. I became very interested in energy trends, energy politics, and new geography created by changing politics leading to opportunities for ene...

Powering the Future: How Geothermal Energy is Revolutionizing the Oil Industry Globally

Harnessing Geothermal Energy Alongside Oil: A Global Case Study   By:  Robert Buluma Geothermal energy, the heat derived from the Earth’s core, has long been recognized as a sustainable and reliable energy source. However, its integration with the oil and gas industry is a relatively new and exciting development. This case study explores how geothermal energy is being harnessed alongside oil globally, highlighting innovative projects, technological breakthroughs, and the synergies between these two industries.   The Synergy Between Geothermal and Oil Industries This Geothermal Decade saw a rise in Oil and Gas companies vouching for Geothermal Energy The oil and gas industry brings decades of expertise in subsurface exploration, drilling, and reservoir management—skills that are directly transferable to geothermal energy development. Both industries rely on similar technologies, such as directional drilling, hydraulic fracturing, and high-temperature equipment, m...

"Zanskar's Lightning Dock Triumph: Redefining Geothermal Energy Potential"

Zanskar's Lightning Dock: A Game-Changer for Geothermal Energy By: Robert Buluma In a bold move that underscores their unwavering commitment to geothermal energy innovation, Zanskar has made headlines with a groundbreaking development at the Lightning Dock geothermal power plant. Betting on an underperforming resource, the company has not only turned the site around but delivered a world-beating gusher that validates their ambitious vision.   The Rise of Lightning Dock Zanskar's strategy has always been clear: harness modern data collection techniques and advanced statistical tools to unlock geothermal sites previously overlooked by the industry. Their efforts over the past three years have led to the discovery of numerous potential hotspots, proving that geothermal has far more untapped potential than previously believed.   Together with XGS energy, Zanskar is well poised to redefine the geothermal energy drilling sector with proven breakthroughs and a financial mus...

PPC Renewables Announces Geophysical Assessment Tender In Tetra, Lesvos Greece

Unveiling the Hidden Mysteries:  PPC Renewables Calls for Tender in Petra, Lesvos Island By: Robert Buluma In the heart of the Aegean Sea lies an island of unparalleled beauty and historical significance – Lesvos. But beneath its serene surface lies a mystery waiting to be unraveled, and  PPC Renewables is taking the lead in uncovering it. Picture this: Land Geophysical Surveys, delving deep into the secrets of Petra, Lesvos Island, Greece. It's not just any ordinary survey; it's a journey into the unknown, a quest for knowledge hidden beneath the earth's surface. Referring to the intriguing Call for Tenders (ref/title: PR110000001319) dated 12th April 2024,  PPC Renewables beckons the daring and the curious to join them in this adventure. The scope of the contract? Nothing short of extraordinary – 2D Seismic Reflection, Gravity & Magnetic Surveys with precise positioning, coupled with integrated Geological-Tectonic-Geophysical analysis of all available data. But w...

INTERVIEW, Geretsried and Beyond: Eavor’s Blueprint for Reliable, Sustainable Energy

Robert Buluma :  Alphaxioms Responses were provided by Jeanine Vany, Executive Vice-President of Corporate Affairs, Eavor . Can you explain the key technological advancements in the latest iteration of the Eavor-Loop™ system? We have made a number of technological advancements at our project in Geretsried Germany . This includes innovation and learning resulting in dramatic improvements in our drilling performance and we’re proud to talk about our technology. For example, Eavor recently announced successful implementation of our in-house AMR (active magnetic ranging) tool which makes drilling more accurate and efficient. Eavor-Link™ AMR uses magnetic ranging while drilling to maintain constant alignment as it drills two wells at approximately 100 metres apart before they are intersected to create a continuous geothermal loop, which is then sealed with Eavor’s proprietary Rock-Pipe™ formula. With real-time data transmission between downhole sensors, the technology ensures tighter bo...

Mercury, Contact Lead NZ's Supercritical Geothermal Energy Revolution

🌋 From the Ground Up: New Zealand’s Bold Leap into a Supercharged Geothermal Future By:  Robert Buluma In the heart of New Zealand, beneath the rugged volcanic landscapes and steaming geysers, lies an energy revolution waiting to erupt. On July 30th, 2025, a powerful message echoed from the geothermal capital of the Southern Hemisphere — New Zealand is not just embracing its geothermal potential; it is preparing to unleash it. With the unveiling of the draft strategy titled From the Ground Up , the government, led by Minister Shane Jones for Resources and Regional Development, signaled a transformative shift in how the nation will harness the heat beneath its feet — and it's as ambitious as it is inspiring. 🔥 A Legacy Forged in Steam New Zealand’s geothermal story is deeply rooted in its identity. Long before turbines spun and power grids buzzed, Māori ancestors were using geothermal waters for warmth, healing, and cooking. Geothermal, or waiwhatu , is more than a resource — ...