Skip to main content

Hawaii’s Underground Secret to Cheaper, Greener Cooling Revealed

Unlocking Hawaii’s Hidden Cooling Power: New Report Reveals Huge Potential for Geothermal Cooling on Oahu (2025)
Could the same volcanic islands that give Hawaii its famous heat also provide the solution to cool its buildings , without crushing the electric grid?  

A groundbreaking new report released December 8, 2025, by the University of Hawaiʻi at Mānoa (UHM) and Lawrence Berkeley National Laboratory (LBNL) says the answer is a resounding yes. Shallow geothermal heat exchangers (GHEs) , also known as geothermal heat pumps or ground-source heat pumps ,could dramatically cut cooling costs and electricity demand across Oahu, especially for large buildings like schools, military bases, and university facilities.

Here’s everything you need to know about this exciting development in Hawaii geothermal cooling technology.

Why Hawaii Is Perfectly Suited for Geothermal Cooling

Most of the world uses geothermal heat pumps for heating in cold climates. Hawaii flips the script: we need cooling 365 days a year.  

Traditional air-conditioning puts enormous strain on Hawaiian Electric’s grid, especially during peak afternoon hours. Geothermal heat pumps work like a refrigerator in reverse ,they move heat from your building into the ground instead of into already-hot outside air.

The magic ingredient? Hawaii’s young volcanic rock is extremely permeable, and the islands have massive natural groundwater flow (think underground rivers inside the lava rock). This constant flow of cool groundwater sweeps away the heat that the system dumps underground, preventing heat buildup and keeping the system efficient for decades.

As LBNL staff scientist Christine Doughty explains:  

“High-temperature geothermal needs deep drilling for electricity, but low-temperature geothermal , accessible just tens or hundreds of feet below the surface , is ideal for building cooling and can greatly lessen loads on Hawaii’s electric grid.”

Key Findings of the 2025 Hawaii Geothermal Cooling Report

The study, funded through the U.S. Department of Energy’s ETIPP program (Energy Technology Innovation Partnership Project), produced the first island-wide favorability maps for both open-loop and closed-loop geothermal heat exchanger systems on Oahu.

Highlights:

Large portions of coastal and central Oahu rank highly favorable (dark green on the maps) for closed-loop systems  

High groundwater flow in volcanic aquifers is the #1 factor for long-term success  

Restricted watersheds and potable-water protection zones limit some areas, but still leave thousands of acres viable  

Potential customers overlay (DoD bases, public/private schools, university campuses) lines up almost perfectly with high-favorability zones  


Researchers zeroed in on the iconic Stan Sheriff Center  a 10,300-seat arena with massive year-round cooling needs ,as a real-world test site.

Two scenarios were modeled over 10 years:

1. No groundwater flow → Heat buildup causes system efficiency to crash after year 1  
2. Realistic groundwater flow (matching site conditions) → Heat is swept away, system performs beautifully for 10+ years  

The conclusion? With Oahu’s natural groundwater movement, a closed-loop geothermal heat pump system at the Stan Sheriff Center could slash cooling electricity use by 40–60% and pay for itself through energy savings, especially with low-interest financing.

Open-Loop vs Closed-Loop Geothermal Systems in Hawaii


Because Hawaii law protects groundwater quality so strictly, closed-loop systems are likely to dominate future installations.

Economic & Environmental Wins

Reduces peak electricity demand → helps avoid blackouts and expensive new power plants  

Cuts cooling bills for schools, military bases, hotels, and office buildings  

Zero direct emissions at the building  

Uses stable ground temperatures (around 74–76 °F year-round in Honolulu) instead of 90 °F+ outdoor air  

Eligible for federal ITC (Investment Tax Credit) 30%+, Hawaii state incentives, and USDA REAP grants  

Nicole Lautze, director of UHM’s Hawaii Groundwater and Geothermal Resources Center, summed it up:  

“This ETIPP project laid the foundation for what I hope will be additional funding to install actual geothermal cooling systems on the UH campus and across the state.”

The Future of Geothermal Cooling in the Aloha State

The report ends with a clear roadmap:

1. Prioritize large public and DoD buildings in high-favorability zones  
2. Pursue demonstration projects at UH Mānoa and select schools  
3. Explore seawater district cooling (already proven at NELHA on Big Island) as complementary technology  
4. Secure low-interest loans and grants to offset upfront costs  

With electricity rates in Hawaii still among the highest in the nation, geothermal heat pumps aren’t just “green” , they’re an economic necessity.

 Want to See If Your Property Is in a High-Favorability Zone?

The full report (including interactive GIS favorability maps) is now publicly available through the Hawaii Groundwater and Geothermal Resources Center and Lawrence Berkeley National Laboratory websites.

If you own or manage a commercial property, a school, a hotel, or a military facility on Oahu, now is the time to investigate geothermal cooling. The geology is ready. The technology is proven. And the new 2025 report just proved Hawaii has some of the best conditions on the planet.

Contact:
Hawaii Groundwater & Geothermal Resources Center – hgg.rc@hawaii.edu  
or visit the ETIPP project page for the complete 2025 Hawaii Geothermal Cooling Feasibility Report.


Aloha, cooler buildings, and lower electric bills are closer than you think , they’re right beneath our feet.


Connect with us: LinkedInX

Comments

Popular Posts

Amsterdam Strikes Geothermal Gold: Hot, Thick, Permeable Reservoir Confirmed

Breakthrough Beneath the Beach: Amsterdam Region Hits Geothermal Paydirt at Strandeiland By: Robert Buluma The Netherlands just took a giant leap toward fossil-free heating. On the artificial island of Strandeiland (part of Amsterdam’s fast-growing IJburg district), the SCAN exploration well has officially confirmed what the geothermal community has been hoping for: a thick, hot, and , most importantly permeable reservoir in the Slochteren Formation. Key numbers that matter:   Reservoir thickness: 152 meters   Bottom-hole temperature: 66 °C   Permeability: confirmed via successful production and injection tests   That’s not screaming-hot by Icelandic standards, but for direct-use district heating in one of Europe’s densest urban areas, 66 °C is more than enough to supply thousands of homes with clean, baseload heat – forever. Why This Well Changes Everything for the Netherlands The Dutch government launched the SCAN program (Seismic Campaign Nethe...

Zanskar’s Big Blind: First Blind Geothermal Discovery in 30 Years

Big Blind: The Geothermal Discovery That Changes Everything By: Robert Buluma Utah startup  Zanskar Geothermal quietly dropped one of the most important announcements in American energy in decades. They discovered and confirmed “Big Blind” ,the first completely blind, commercial-grade geothermal system found in the United States in over thirty years. Let that sink in. No hot springs.   No fumaroles.   No steaming ground.   No prior wells.   Zero surface expression whatsoever. Just desert, sagebrush, and – 7,000 feet below,  a reservoir hot enough and permeable enough to support gigawatt-scale power production. This isn’t incremental progress. This is a paradigm breaker. Why “Blind” Discoveries Matter So Much For the last 40 years, geothermal development in the U.S. has been geographically handcuffed. You could only build plants where nature advertised the resource on the surface – think Yellowstone, The Geysers, or Imperial Valley. Ever...

Eavor’s Geretsried Closed-Loop Geothermal Plant Now Powers the Grid

Eavor Technologies Achieves Historic Milestone: World’s First Commercial-Scale Closed-Loop Geothermal System Now Delivering Power in Geretsried, Germany Published: December 2025 By:  Robert Buluma The Day Geothermal Changed Forever On a crisp Bavarian morning in late 2025, a quiet revolution in clean energy officially went live.   Eavor Technologies Inc ., the Calgary-based pioneer of closed-loop geothermal technology, announced that its flagship commercial project in Geretsried, Germany has begun delivering power to the grid becoming the world’s first utility-scale multilateral closed-loop geothermal system to achieve commercial operation. For anyone who has followed the geothermal sector for the last decade, this is nothing short of seismic (pun intended). What Makes Eavor’s Closed-Loop System Truly Disruptive? Traditional geothermal plants rely on naturally occurring hot water reservoirs or enhanced geothermal systems (EGS) that require hydraulic fracturing and massiv...

Potsdam Goes Deep: How an All-Electric Drilling Rig Is Turning the City’s Heating Completely Fossil-Free

Revolutionizing Urban Heating: UGS GmbH's Pioneering Geothermal Project in Potsdam By: Robert Buluma In the heart of Germany’s energy transition, a quiet but powerful revolution is taking place in Potsdam. UGS GmbH, a German subsidiary of the French energy storage specialist Geostock, has begun a landmark geothermal project that could redefine how entire cities stay warm in winter ,without burning a single drop of oil or cubic meter of gas. The project, awarded by the local utility Energie und Wasser Potsdam GmbH (EWP), focuses on the former site of the HKW Süd combined heat and power plant in southern Potsdam. The goal is ambitious: replace the aging gas-fired plant with deep geothermal energy and other renewables, eventually supplying tens of thousands of households with completely CO₂-free district heating. At the center of this transformation stands a piece of machinery that looks like something from the future: UGS’s fully modernized, all-electric drilling rig “Rig 110”. After...

Chevron’s Big Pivot: Betting Billions on Geothermal and Biofuels

Chevron CEO Sees Growing Potential in Biofuels and Geothermal Energy Posted by  Robert Buluma | December 11, 2025 The energy world is changing fast, and Chevron, one of the oldest and largest oil companies on the planet, is not sitting on the sidelines. In a recent wide-ranging interview with The Wall Street Journal, Chevron CEO Mike Wirth made it clear: the company sees major, long-term growth in two areas that have nothing to do with crude oil,biofuels and geothermal energy. For a company built on drilling for hydrocarbons, this pivot toward heat from the Earth’s core and fuels grown from plants is nothing short of remarkable. From Black Gold to Green Heat: Why Chevron Is Betting Big on Geothermal Geothermal energy has long been the quiet, reliable cousin in the renewable family,always there, rarely flashy, but suddenly very attractive. Unlike solar panels that go dark at night or wind turbines that stop when the air is still, geothermal plants deliver steady, 24/7 baseload p...

Europe’s Underground Energy Revolution: EGEC Demands 250 GW Geothermal by 2040

Europe’s Geothermal Revolution Is Coming: EGEC Demands a 250 GW Target by 2040 – Here’s Why 2026 Will Be Make-or-Break By: Robert Buluma Published: December 9, 2025   On 5 December 2025, the European Geothermal Energy Council (EGEC) dropped a bombshell policy paper with a crystal-clear message to Brussels: Europe is sleeping on the biggest indigenous, baseload, 24/7 renewable energy source under its feet , and it’s time to wake up. Titled ,The European Geothermal Strategy and Action Plan , Making Europe competitive, secure and affordable, the document is the strongest industry call yet for the European Commission to publish a dedicated European Geothermal Strategy and Action Plan in Q1 2026. And the ambition is massive: 250 GW of installed geothermal capacity by 2040 a six-fold increase from today’s ~44 GW (mostly district heating and a handful of power plants). Why Now? Because Europe Can No Longer Afford to Wait Since Russia’s invasion of Ukraine, Europe has been laser-focu...

Fervo Energy Secures $462 Million to Supercharge Geothermal Innovation

Fervo Energy's $462 Million Geothermal Gold Rush: Google Joins the Heat By:  Robert Buluma December 10, 2025 In the fast-evolving world of clean energy, where solar panels dominate skylines and wind farms stretch across horizons, a deeper and quieter revolution is rising from beneath our feet. Fervo Energy, the Houston-based innovator in enhanced geothermal systems (EGS), has just announced an astonishing $462 million Series E funding round. This isn’t just another climate-tech investment,it's a tectonic moment for geothermal energy. The round was led by   B Capital , joined by major players including Google , Tesla co-founder JB Straubel, and nuclear industry leader Kris Singh. With continued backing from Breakthrough Energy Ventures and Devon Energy, Fervo’s total funding now exceeds $1.5 billion. Why the sudden rush? As AI-driven data centers consume unprecedented amounts of electricity and political winds shift around renewable priorities, geothermal’s promise of 2...

Szczecin Signs 2km Geothermal Well for Energy Independence

Szczecin Takes a Bold Step Toward Energy Self-Sufficiency With New 2-Kilometer Geothermal Well By:  Robert Buluma Szczecin has officially launched one of its most ambitious energy initiatives yet,signing a contract for the construction of a nearly 2-kilometer geothermal exploratory well, a move city leaders are calling “a step toward true energy self-sufficiency.” The new well, designed to determine the geothermal potential beneath the city, could unlock a reliable, clean, and locally available heat source that strengthens energy security while reducing environmental impact. A Strategic Investment in Clean, Local Energy  According to the City Hall, the exploratory-reconnaissance well will help verify whether the geological structures beneath Szczecin contain high-yield geothermal reservoirs suitable for long-term heat production. “We hope this becomes another source of energy that allows us to diversify supply, ensure continuity of services, and maintain financial stability wh...

🔥 Krafla Magma Testbed: Drilling Into the Earth’s Fiery Heart

Krafla Magma Testbed (KMT) : Humanity’s Bold Leap Into the Heart of the Earth Interview  from Bjorn Gudmundsson the C.E.O-Krafla Magma Testbed and Team By:  Robert Buluma In 2009, deep beneath Iceland’s iconic Krafla volcano, a drilling team made history. During the IDDP-1 project, their drill bit pierced into magma molten rock at just two kilometers below the surface. What began as an accident became a scientific revelation. For the first time, humans had safely accessed magma. This “Eureka” moment gave birth to an idea so daring it almost sounds like science fiction: the creation of a permanent observatory where magma could be directly studied. That idea became the  Krafla Magma Testbed (KMT) a visionary international project that promises to rewrite the future of geothermal science, volcanic monitoring, and sustainable energy. Why Krafla? The Perfect Laboratory Beneath Our Feet Krafla’s  geology is unique. It offers a known shallow magma body, decades of research...

CeraPhi Energy to Quietly Heat 460-Year-Old Kentwell Hall with Invisible Deep Geothermal

A 400-Year-Old Tudor Mansion Just Chose Next-Gen Geothermal  And It Changes Everything Posted by  Robert Buluma | December 11, 2025 Deep in the rolling countryside of Suffolk, England, stands Kentwell Hall ,a moated, red-brick Tudor masterpiece built in 1563, complete with octagonal guard towers, a 16th-century long gallery, and gardens that have hosted queens. For centuries it has been heated (if you can call it that) by a wheezing, century-old oil boiler that gulps thousands of litres of heating oil every winter yet still leaves the 400-year-old rooms chilly and the fuel bills astronomical. That is about to change , dramatically, invisibly, and permanently. This week it was announced that Kentwell Hall has selected CeraPhi Energy , a British deep-geothermal pioneer, to carry out a world-first feasibility study and, if successful, install a closed-loop deep geothermal heating system that will make the entire estate net-zero with almost zero visible impact on the Grade I list...