Skip to main content

From Brine to Batteries: Vulcan’s Landau Breakthrough in Geothermal Lithium

Vulcan Energy  secures land in Landau for its geothermal + lithium plant   a major leap toward Europe’s carbon-neutral lithium for EVs ⚡

Vulcan Energy  just cleared a big hurdle in its plan to create a homegrown, low-carbon battery supply chain for Europe. The company has secured approval to purchase the plot in Landau (Rhineland-Palatinate) for a combined Geothermal and Lithium Extraction Plant (G-LEP) — the physical site where geothermal heat and lithium will be produced side-by-side.

What happened (short version)
  • On 11 September 2025 Vulcan announced it has secured approval from the City of Landau council to purchase the D12 industrial plot where it will build its G-LEP.
  • This follows an earlier option agreement between the company and the city that had already reserved the site for Vulcan.

Why this matters — more than just land
Vulcan's model is unique: it uses geothermal brine (hot, lithium-bearing fluid underground) to produce both renewable heat/electricity and to extract lithium via water-based chemical processing. That allows lithium chemicals to be made with very low lifecycle CO₂ compared with conventional mined and processed lithium — a critical selling point for automakers chasing truly low-carbon EV supply chains.
The Landau G-LEP will be one of the physical anchors of that vision: local heat and electricity generation (reported building permits include a 30 MW geothermal plant and associated electrical substation) plus lithium extraction infrastructure. That tight integration is what enables the company to claim a path to carbon-neutral or near-zero carbon lithium.

Financing & policy tailwinds
Vulcan  has also attracted substantial public support: the company secured €104 million in German government grants for its “Clean Lithium for Battery Cell Production” program earlier in 2025, part of a coordinated push by Berlin to strengthen Europe’s raw-materials sovereignty for batteries. That funding — paired with EU strategic project recognition — gives the Landau plan stronger chances of timely build-out.

What this means for Europe’s EV supply chain
  1. Reduced import dependence — Producing lithium inside the EU reduces exposure to long overseas supply chains and the emissions associated with them.
  1. Cleaner batteries — Lithium produced with geothermal energy can materially cut the carbon footprint of battery cells and therefore of EVs made with those cells.
  1. Industrial clustering — A Landau G-LEP creates local jobs, downstream chemical conversion activity (e.g., to lithium hydroxide), and strengthens links with European automakers that are already signing offtake/partnership agreements with Vulcan.

Risks & open questions
No project is risk-free. Key items to watch:
  • Permitting & community acceptance: geothermal and DLE projects still require robust community engagement and environmental permitting (noise, traffic, subsurface risks). The Landau council approval to sell the land is a big step, but further permits and construction approvals remain.
  • Scale-up & processing: piloting and small-scale production are different from industrial throughput — Vulcan must demonstrate consistent product quality at commercial volumes.
  • Financing execution: public grants help, but large industrial plants need more capital (debt/equity/partners). Vulcan has been pursuing a multi-source financing package.

Bottom line
The Landau land approval is a concrete, high-visibility step from concept to construction for Vulcan's vision of Europe’s first integrated, low-carbon lithium supply sourced from local geothermal brines. If the company can navigate permitting, scale-up, and financing, Landau could become a blueprint for how regions produce battery materials with a dramatically smaller carbon footprint — an important piece in the puzzle of genuinely green electric mobility.

Source: Alphaxioms@gmail.com 

Connect with us: Alphaxioms

Comments

Hot Topics 🔥

Vulcan Energy's G-LEP Plant in Landau Paves the Way for Europe's Sustainable Lithium Revolution

Breaking Ground: Vulcan Energy's G-LEP Plant in Landau Paves the Way for Europe's Sustainable Lithium Revolution By: Robert Buluma In the heart of Germany's Rhineland-Palatinate region, a groundbreaking ceremony marked the laying of the foundation stone for the first optimized Geothermal and Lithium Extraction Plant (G-LEP) in Landau, spearheaded by Vulcan Energy Resources, an Australian-German company. As Petra Dick-Walther, State Secretary in the Ministry for Climate Protection, Environment, Energy, and Mobility of Rhineland-Palatinate, described in her recent social media post, this project represents a "quantum leap into the future." It enables the simultaneous extraction of climate-neutral lithium and generation of renewable energy from the hot thermal beds of the Upper Rhine Graben, opening new avenues for Germany's energy transition, supply security, and Europe's sovereignty over critical resources. Lithium, a key component in batteries for electri...

Geo Dipa's Game-Changing Leap: Commercial Silica and Lithium Production from Geothermal Brines by 2028

Geo Dipa's Ambitious Leap: Extracting Silica and Lithium from Geothermal Brines by 2028 Introduction In an era where the global energy transition demands sustainable sources of critical minerals, Indonesia's state-owned PT Geo Dipa Energi ( Persero ) is positioning itself at the forefront of innovation. By 2028, Geo Dipa plans to commence commercial production of silica and lithium extracted from geothermal brines, a byproduct of its geothermal power operations. This initiative not only diversifies the company's revenue streams but also aligns with Indonesia's broader goals of enhancing renewable energy capacity and supporting the electric vehicle (EV) battery supply chain.  Geothermal energy, harnessed from the Earth's heat, produces hot brines rich in dissolved minerals like lithium and silica. Traditionally viewed as waste, these brines are now seen as valuable resources. Geo Dipa's strategy builds on years of feasibility studies and international partnershi...

FINANCING STRATEGIES FOR GEOTHERMAL PROJECTS LEVERAGING TAX CREDIT INCENTIVES

FINANCING STRATEGIES FOR GEOTHERMAL PROJECTS LEVERAGING TAX CREDIT INCENTIVES Aligning Policy, Risk Mitigation, and Investor Capital to Unlock Geothermal Growth Geothermal energy stands at a unique crossroads in the global energy transition. It is one of the few renewable resources capable of delivering continuous, baseload power and heat, independent of weather conditions. Unlike solar and wind, geothermal offers grid stability, industrial heat, and long-term energy security. Yet despite its immense potential, geothermal deployment has historically lagged behind other renewables due to high upfront capital costs, geological uncertainty, and complex financing requirements. In recent years, governments and financial institutions have increasingly turned to **tax credit incentives as a strategic lever to overcome these barriers. By reducing capital expenditure, improving cash flow profiles, and attracting institutional investors, tax credits are reshaping how geothermal projects are fina...

The 2025 U.S. Geothermal Market Report published by the National Laboratory of the Rockies & Geothermal Rising

The 2025 U.S. Geothermal Market Report published by the National Laboratory of the Rockies (NLR, formerly NREL) in collaboration with Geothermal Rising and supported by the U.S. Department of Energy's Geothermal Technologies Office (GTO), provides a comprehensive update on the geothermal sector since the 2021 report.  By:  Robert Buluma Released in 2025 (with data through mid-2025), it expands coverage to include geothermal heat pumps (GHPs) for single-building and district applications, alongside power generation and direct use. The report highlights steady growth in installed capacity, accelerating investment in next-generation technologies like enhanced geothermal systems (EGS) and closed-loop geothermal (CLG), cost declines, policy support, and emerging opportunities driven by demand for reliable, 24/7 clean energy. Geothermal Power Generation: Steady Growth and Momentum U.S. geothermal power has seen consistent expansion, with nameplate installed capacity reaching 3,96...

Switch's Bold Move: 13MW Geothermal PPA with Ormat in Nevada – Game-Changer

Switch's Bold Move: Signing a 13MW Geothermal PPA with Ormat Technologies in Nevada – A Game-Changer for Sustainable Data Centers Image: Ormat Power Plant Posted by Alphaxioms Geothermal News on January 12, 2026 Welcome back to Alphaxioms Geothermal News, your go-to source for all things geothermal energy, innovation, and sustainability. As we kick off 2026, the intersection of renewable energy and high-tech industries is heating up—literally. Today, we're diving deep into a groundbreaking announcement that's set to reshape how data centers power their operations. Global data center operator Switch has inked a 20-year Power Purchase Agreement (PPA) with Ormat Technologies for 13MW of geothermal power from the Salt Wells geothermal power plant in Nevada. This isn't just another deal; it's a pivotal step toward carbon-free, reliable energy for the AI-driven future. In this comprehensive blog post, we'll unpack the details of this agreement, explore the technolog...

13 States Launch Initiative to Accelerate Geothermal Power Development

NASEO Launches Multistate Geothermal Power Accelerator: A Major Step Toward Clean, Reliable Energy By:  Robert Buluma In a significant boost for America's clean energy future, the National Association of State Energy Officials (NASEO) announced on December 18, 2025, the launch of the NASEO Geothermal Power Accelerator. This collaborative initiative brings together 13 states to fast-track the development of geothermal power in partnership with the private sector. Funded by the U.S. Department of Energy’s Geothermal Technologies Office and NASEO itself, the Accelerator aims to unlock the vast potential of geothermal energy a reliable, firm, and flexible source of clean power available around the clock. The participating states are Arizona, California, Colorado, Hawaii, Idaho, Louisiana, Montana, Nevada, New Mexico, Oregon, Pennsylvania, Utah, and West Virginia. These diverse regions, spanning traditional geothermal hotspots in the West to emerging opportunities in the East, will wo...

Amsterdam Strikes Geothermal Gold: Hot, Thick, Permeable Reservoir Confirmed

Breakthrough Beneath the Beach: Amsterdam Region Hits Geothermal Paydirt at Strandeiland By: Robert Buluma The Netherlands just took a giant leap toward fossil-free heating. On the artificial island of Strandeiland (part of Amsterdam’s fast-growing IJburg district), the SCAN exploration well has officially confirmed what the geothermal community has been hoping for: a thick, hot, and , most importantly permeable reservoir in the Slochteren Formation. Key numbers that matter:   Reservoir thickness: 152 meters   Bottom-hole temperature: 66 °C   Permeability: confirmed via successful production and injection tests   That’s not screaming-hot by Icelandic standards, but for direct-use district heating in one of Europe’s densest urban areas, 66 °C is more than enough to supply thousands of homes with clean, baseload heat – forever. Why This Well Changes Everything for the Netherlands The Dutch government launched the SCAN program (Seismic Campaign Nethe...

Banda Baru Geothermal Tender Flops: Zero Bidders Step Forward

Banda Baru Geothermal Survey Tender Fails to Attract Bidders By:  Robert Buluma Indonesia's push toward renewable energy suffered a notable setback in late 2025 when the tender for the Preliminary Survey and Exploration Assignment (WPSPE) of the Banda Baru Sepa geothermal block closed without a single bidder. Located on the remote Seram Island in Maluku Province, this 1,989-hectare site was seen as a promising addition to the nation's geothermal portfolio, with estimated potential of around 25-30 MW. The tender, open from October 31 to December 1, 2025, aimed to assign a developer for initial surveys and exploration, but the lack of interest underscores deep-rooted challenges in attracting investment to Indonesia's geothermal sector. Seram Island, a rugged and largely undeveloped landmass north of Ambon, is characterized by dense rainforests, towering mountains, and limited infrastructure. The Banda Baru block's location amplifies logistical difficulties, making it a to...

GEOLOG Acquires Quad Ltd and QO Inc. to Revamp Wellsite Geology and Pore Pressure Outreach

Revolutionizing the Depths: How GEOLOG's Strategic Acquisition is Supercharging Geothermal Energy's Future By: Robert Buluma Imagine plunging miles beneath the Earth's surface, tapping into an ancient furnace of heat that never sleeps, never falters, and never runs out. This is geothermal energy—the planet's own endless battery, capable of powering civilizations with clean, reliable electricity around the clock. While solar panels go dark at night and wind turbines stand idle in calm air, geothermal delivers baseload power with capacity factors often above 90%. In a world racing toward net-zero emissions and facing exploding energy demands from data centers, electric vehicles, and industrial growth, geothermal is emerging as the sleeping giant ready to awaken. Scaling geothermal globally, however, is no simple task. Drilling deep into the crust exposes crews to extreme conditions: temperatures soaring past 300°C, highly corrosive fluids, and rock so hard it can destroy...

Versailles Powers Its Historic Legacy with Deep Geothermal Energy: A Model for Sustainable Urban Heating

Versailles Embraces Deep Geothermal Energy to Decarbonize Its District Heating Network By Robert Buluma The historic city of Versailles in France's Yvelines department is taking a bold step toward sustainability. On December 18, 2025, Mayor François de Mazières and Franck Lacroix, Deputy Managing Director of Engie , signed a 32-year concession agreement. This partnership entrusts Engie with transforming, modernizing, and greening the city's district heating network, aiming to slash carbon emissions while providing reliable, renewable heat to residents. At the project's core is deep geothermal energy, harnessing the natural heat from underground aquifers. The site targets the Dogger aquifer, a limestone formation from the Middle Jurassic period, located about 1,500 meters below the Paris Basin. Water in this layer reaches temperatures of around 60°C, making it ideal for heating. The plan involves drilling a geothermal doublet two wells: one to extract hot water and another t...