Skip to main content

Turboden to Deliver 180 MW of Gen-2 ORC Plants for Fervo’s Cape Station Geothermal Project in Utah

Turboden Fervo and the Future of Geothermal: 180 MW of Gen-2 ORC Plants for Cape Station, Utah

By: Robert Buluma



October 2, 2025   In a landmark move for clean energy and geothermal power, Turboden America LLC   the U.S. arm of Turboden S.p.A. (a Mitsubishi Heavy Industries group company)  has been selected to supply 180 MW of Gen-2 Organic Rankine Cycle (ORC) power plants for Fervo Energy’s Cape Station geothermal project in Utah.

A New Milestone in Geothermal Deployment

This award relates to Phase II of the Cape Station development, following Turboden’s earlier participation in Phase I. Under Phase II, Turboden will provide three ORC units, each with a gross output of 60 MWe, summing to 180 MWe.

Once installed and operational (targeted by 2028), these Gen-2 units will bring the total ORC capacity on site to 300 MWe, making Cape Station one of the largest geothermal installations globally.

The earlier Phase I installation, involving Turboden’s Gen-1 ORC units, is slated for commissioning in 2026.

Why This Is Significant

  • Scalability & Validation
    The scaling from Gen-1 to Gen-2 underscores confidence in the modular ORC concept. Turboden’s repeated selection signals trust in their technology and ability to deliver at utility scale.

  • 24/7 Clean Power
    Geothermal, particularly with enhanced geothermal systems (EGS), offers a reliable renewable energy source unaffected by diurnal cycles or weather. Projects like Cape Station push geothermal further into the “firm renewables” category.

  • Deepening U.S. Presence
    Turboden  America LLC became fully functional in October 2024, establishing a stronger local footprint to support U.S. projects.

  • Strong Partnerships & Long-Term Vision
    The award reflects the deepening collaboration between Turboden and Fervo. Fervo’s leadership has emphasized that modular ORC systems like these are central to unlocking geothermal’s full potential.

Technical and Strategic Themes

What Is a Gen-2 ORC?

ORC, or Organic Rankine Cycle, is a method of converting thermal energy (from geothermal, waste heat, etc.) into electricity using an organic working fluid with a lower boiling point than water. Gen-2 implies improvements higher efficiency, better integration, and modularity that supports scale and flexibility.

Modular Design & Dispatchability

A key aim is modularity: breaking a large plant into several ORC “units” that can be commissioned in phases, maintained independently, or scaled over time. That modularity also helps with grid compatibility and reliability.

Timeframe & Delivery

Engineering, procurement, and commissioning of the core ORC equipment are planned to conclude by 2028.

The Bigger Picture: Cape Station & EGS

 isn’t just another geothermal plant it’s built around enhanced geothermal systems (EGS), which expand geothermal potential beyond naturally high-permeability reservoirs. The full Cape Station project has ambitions well beyond this phase, positioning itself as a global showcase for large-scale, dispatchable geothermal.

Quotes & Perspective

Paolo Bertuzzi, CEO of Turboden, stated:

“We are honored to deepen our collaboration with Fervo Energy … This new order further validates the reliability and scalability of our ORC technology…”

Tim Latimer, CEO and co-founder of Fervo Energy, added:

“Phase II marks another leap forward in our mission to unlock geothermal’s full potential … Turboden’s proven expertise … are key to delivering on our promise of reliable and affordable power.”

Challenges & Considerations

  • Technical risk: Larger scale and new generation units must meet expected performance thresholds.
  • Cost & financing: The capital-intensive nature of geothermal and EGS demands robust funding and cost control.
  • Regulatory & permitting: Projects in the U.S. must navigate a complex regulatory landscape, especially for subsurface developments.
  • Grid integration: Ensuring geothermal output aligns with grid requirements, especially as more intermittent renewables come on line.

Why This Matters for the Clean Energy Transition

  • Geothermal is often overlooked relative to solar and wind, but it is uniquely positioned to provide constant (baseload) carbon-free power.
  • Success at Cape Station can catalyze further investment and confidence in geothermal, shifting the narrative toward “renewables that don’t rest.”
  • Partnerships like Turboden–Fervo combine deep domain expertise (engineering, subsurface science, plant design) — a model for future clean energy developments.
Source :Turboden

Connect with us: LinkedInX

Comments

Hot Topics 🔥

Vulcan Energy's G-LEP Plant in Landau Paves the Way for Europe's Sustainable Lithium Revolution

Breaking Ground: Vulcan Energy's G-LEP Plant in Landau Paves the Way for Europe's Sustainable Lithium Revolution By: Robert Buluma In the heart of Germany's Rhineland-Palatinate region, a groundbreaking ceremony marked the laying of the foundation stone for the first optimized Geothermal and Lithium Extraction Plant (G-LEP) in Landau, spearheaded by Vulcan Energy Resources, an Australian-German company. As Petra Dick-Walther, State Secretary in the Ministry for Climate Protection, Environment, Energy, and Mobility of Rhineland-Palatinate, described in her recent social media post, this project represents a "quantum leap into the future." It enables the simultaneous extraction of climate-neutral lithium and generation of renewable energy from the hot thermal beds of the Upper Rhine Graben, opening new avenues for Germany's energy transition, supply security, and Europe's sovereignty over critical resources. Lithium, a key component in batteries for electri...

FINANCING STRATEGIES FOR GEOTHERMAL PROJECTS LEVERAGING TAX CREDIT INCENTIVES

FINANCING STRATEGIES FOR GEOTHERMAL PROJECTS LEVERAGING TAX CREDIT INCENTIVES Aligning Policy, Risk Mitigation, and Investor Capital to Unlock Geothermal Growth Geothermal energy stands at a unique crossroads in the global energy transition. It is one of the few renewable resources capable of delivering continuous, baseload power and heat, independent of weather conditions. Unlike solar and wind, geothermal offers grid stability, industrial heat, and long-term energy security. Yet despite its immense potential, geothermal deployment has historically lagged behind other renewables due to high upfront capital costs, geological uncertainty, and complex financing requirements. In recent years, governments and financial institutions have increasingly turned to **tax credit incentives as a strategic lever to overcome these barriers. By reducing capital expenditure, improving cash flow profiles, and attracting institutional investors, tax credits are reshaping how geothermal projects are fina...

The 2025 U.S. Geothermal Market Report published by the National Laboratory of the Rockies & Geothermal Rising

The 2025 U.S. Geothermal Market Report published by the National Laboratory of the Rockies (NLR, formerly NREL) in collaboration with Geothermal Rising and supported by the U.S. Department of Energy's Geothermal Technologies Office (GTO), provides a comprehensive update on the geothermal sector since the 2021 report.  By:  Robert Buluma Released in 2025 (with data through mid-2025), it expands coverage to include geothermal heat pumps (GHPs) for single-building and district applications, alongside power generation and direct use. The report highlights steady growth in installed capacity, accelerating investment in next-generation technologies like enhanced geothermal systems (EGS) and closed-loop geothermal (CLG), cost declines, policy support, and emerging opportunities driven by demand for reliable, 24/7 clean energy. Geothermal Power Generation: Steady Growth and Momentum U.S. geothermal power has seen consistent expansion, with nameplate installed capacity reaching 3,96...

Geo Dipa's Game-Changing Leap: Commercial Silica and Lithium Production from Geothermal Brines by 2028

Geo Dipa's Ambitious Leap: Extracting Silica and Lithium from Geothermal Brines by 2028 Introduction In an era where the global energy transition demands sustainable sources of critical minerals, Indonesia's state-owned PT Geo Dipa Energi ( Persero ) is positioning itself at the forefront of innovation. By 2028, Geo Dipa plans to commence commercial production of silica and lithium extracted from geothermal brines, a byproduct of its geothermal power operations. This initiative not only diversifies the company's revenue streams but also aligns with Indonesia's broader goals of enhancing renewable energy capacity and supporting the electric vehicle (EV) battery supply chain.  Geothermal energy, harnessed from the Earth's heat, produces hot brines rich in dissolved minerals like lithium and silica. Traditionally viewed as waste, these brines are now seen as valuable resources. Geo Dipa's strategy builds on years of feasibility studies and international partnershi...

Switch's Bold Move: 13MW Geothermal PPA with Ormat in Nevada – Game-Changer

Switch's Bold Move: Signing a 13MW Geothermal PPA with Ormat Technologies in Nevada – A Game-Changer for Sustainable Data Centers Image: Ormat Power Plant Posted by Alphaxioms Geothermal News on January 12, 2026 Welcome back to Alphaxioms Geothermal News, your go-to source for all things geothermal energy, innovation, and sustainability. As we kick off 2026, the intersection of renewable energy and high-tech industries is heating up—literally. Today, we're diving deep into a groundbreaking announcement that's set to reshape how data centers power their operations. Global data center operator Switch has inked a 20-year Power Purchase Agreement (PPA) with Ormat Technologies for 13MW of geothermal power from the Salt Wells geothermal power plant in Nevada. This isn't just another deal; it's a pivotal step toward carbon-free, reliable energy for the AI-driven future. In this comprehensive blog post, we'll unpack the details of this agreement, explore the technolog...

13 States Launch Initiative to Accelerate Geothermal Power Development

NASEO Launches Multistate Geothermal Power Accelerator: A Major Step Toward Clean, Reliable Energy By:  Robert Buluma In a significant boost for America's clean energy future, the National Association of State Energy Officials (NASEO) announced on December 18, 2025, the launch of the NASEO Geothermal Power Accelerator. This collaborative initiative brings together 13 states to fast-track the development of geothermal power in partnership with the private sector. Funded by the U.S. Department of Energy’s Geothermal Technologies Office and NASEO itself, the Accelerator aims to unlock the vast potential of geothermal energy a reliable, firm, and flexible source of clean power available around the clock. The participating states are Arizona, California, Colorado, Hawaii, Idaho, Louisiana, Montana, Nevada, New Mexico, Oregon, Pennsylvania, Utah, and West Virginia. These diverse regions, spanning traditional geothermal hotspots in the West to emerging opportunities in the East, will wo...

Banda Baru Geothermal Tender Flops: Zero Bidders Step Forward

Banda Baru Geothermal Survey Tender Fails to Attract Bidders By:  Robert Buluma Indonesia's push toward renewable energy suffered a notable setback in late 2025 when the tender for the Preliminary Survey and Exploration Assignment (WPSPE) of the Banda Baru Sepa geothermal block closed without a single bidder. Located on the remote Seram Island in Maluku Province, this 1,989-hectare site was seen as a promising addition to the nation's geothermal portfolio, with estimated potential of around 25-30 MW. The tender, open from October 31 to December 1, 2025, aimed to assign a developer for initial surveys and exploration, but the lack of interest underscores deep-rooted challenges in attracting investment to Indonesia's geothermal sector. Seram Island, a rugged and largely undeveloped landmass north of Ambon, is characterized by dense rainforests, towering mountains, and limited infrastructure. The Banda Baru block's location amplifies logistical difficulties, making it a to...

Geothermal Power Play: Well Engineering Partners Takes Over Operations as Sproule ERCE Sharpens Advisory Focus

The geothermal energy sector is heating up literally and figuratively and a recent strategic move is set to accelerate progress in sustainable energy production. By: Robert Buluma Effective January 1, 2026, Well Engineering Partners (WEP) acquired the operational and production-focused geothermal activities from Sproule ERC (formerly associated with Veegeo). This acquisition marks a smart realignment of strengths in the booming geothermal market, where clean, reliable baseload energy is increasingly vital for the global energy transition. Imagine harnessing the Earth's natural heat to power homes, industries, and cities without the intermittency of solar or wind. Geothermal energy does exactly that, providing constant output from deep underground reservoirs. But turning that potential into reality requires specialized expertise from initial resource assessment to long-term well maintenance. That's where this deal shines: it allows each company to double down on what they do b...

Versailles Powers Its Historic Legacy with Deep Geothermal Energy: A Model for Sustainable Urban Heating

Versailles Embraces Deep Geothermal Energy to Decarbonize Its District Heating Network By Robert Buluma The historic city of Versailles in France's Yvelines department is taking a bold step toward sustainability. On December 18, 2025, Mayor François de Mazières and Franck Lacroix, Deputy Managing Director of Engie , signed a 32-year concession agreement. This partnership entrusts Engie with transforming, modernizing, and greening the city's district heating network, aiming to slash carbon emissions while providing reliable, renewable heat to residents. At the project's core is deep geothermal energy, harnessing the natural heat from underground aquifers. The site targets the Dogger aquifer, a limestone formation from the Middle Jurassic period, located about 1,500 meters below the Paris Basin. Water in this layer reaches temperatures of around 60°C, making it ideal for heating. The plan involves drilling a geothermal doublet two wells: one to extract hot water and another t...

Rodatherm Energy: Pioneering Closed Loop Geothermal in Utah

Revolutionizing Geothermal Energy: Rodatherm's Game-Changing Approach in Utah Posted by Alphaxioms Geothermal News on January 17, 2026 Utah-based Rodatherm Energy Corporation has revolutionized the geothermal energy equation, and venture capitalists have taken note. With pilot projects planned for Millard County and Beaver County, the company has what founder and CEO Curtis Cook calls “a novel approach” to geothermal technology. In a world racing toward sustainable energy solutions, geothermal power has long been a reliable but underutilized player. Traditional geothermal systems rely on water to extract heat from the Earth's depths, often limiting their deployment to remote, sparsely populated areas due to environmental concerns and high costs. But Rodatherm is flipping the script with its innovative, waterless closed-loop system that promises efficiency, scalability, and minimal environmental impact. At the heart of Rodatherm's technology is what Cook describes as ...